Gulrajani R M, Roberge F A
Fed Proc. 1978 Jun;37(8):2146-52.
Certain invertebrate neurons generate endogenous bursts of action potentials due to an underlying slow membrane potential oscillation. An early hypothesis for the oscillations proposed a high resting sodium conductance that led to the depolarizing phase, followed by activation of an electrogenic sodium pump coupled to chloride ions, leading to the hyperpolarizing phase. Recent findings contradict this hypothesis. Current thought implicates two conductances in the generation of the oscillations. The depolarizing phase is due to an increase in a sodium or a calcium conductance; the hyperpolarizing phase is due to a subsequent increase in a potassium conductance, which may be either voltage dependent or triggered by an influx of calcium ions. The observation of a negative slope conductance region in the membrane I-V characteristic supports this hypothesis. Bursting cells also usually exhibit anomalous rectification, i.e., a decrease in slope conductance with depolarization, in the I-V characteristic. This decrease may result from a decrease in an outward current or an increase in an inward current. The more important bursting membrane characteristics have been incorporated into an electronic analog. The analog confirms the appropriateness of the two-conductance hypothesis. It also suggests that potassium ion accumulation outside the cell membrane may enhance bursting activity.
某些无脊椎动物神经元会由于潜在的缓慢膜电位振荡而产生内源性动作电位爆发。关于这种振荡的早期假说是,存在高静息钠电导导致去极化阶段,随后是与氯离子偶联的电生钠泵的激活,导致超极化阶段。最近的研究结果与这一假说相矛盾。目前的观点认为振荡的产生涉及两种电导。去极化阶段是由于钠电导或钙电导增加;超极化阶段是由于随后钾电导增加,钾电导可能是电压依赖性的,也可能是由钙离子内流触发的。在膜电流-电压特性中观察到负斜率电导区域支持了这一假说。爆发性细胞在电流-电压特性中通常还表现出反常整流,即随着去极化斜率电导降低。这种降低可能是由于外向电流减少或内向电流增加导致的。更重要的爆发性膜特性已被纳入一个电子模拟模型。该模拟模型证实了双电导假说的合理性。它还表明细胞膜外钾离子积累可能增强爆发活动。