Suppr超能文献

在牛蛙幼体发育过程中,视网膜神经节细胞终末会改变其投射位点。

Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens.

作者信息

Reh T A, Constantine-Paton M

出版信息

J Neurosci. 1984 Feb;4(2):442-57. doi: 10.1523/JNEUROSCI.04-02-00442.1984.

Abstract

Interconnecting neuronal populations in the vertebrate CNS are typically not well matched in their overall topographic patterns of histogenesis and differentiation during development. One striking example of this mismatch is the retinotectal system of the frog, where the retina grows in concentric annuli, while the optic tectum, a major retinal target, adds new neurons at only the caudo-medial border. The retinal ganglion cell (RGC) terminals nevertheless form an organized map in the tectum during the period when the two structures are undergoing such disparate modes of growth. This led Gaze et al. (Gaze, R. M., M. J. Keating, and S. H. Chung (1974) Proc. R. Soc. Lond. (Biol.) 185: 301-330) to propose that the terminals must shift caudally during development. In the present study, we have directly tested the hypothesis of "shifting connections" by selectively labeling an identified population of RGC terminals, those at the optic nerve head (ONH), and determining their tectal projection site relative to a particular group of [3H]thymidine-labeled tectal neurons. With this double-label technique, we have found that RGC terminals from cells at the ONH move from a position rostral to the [3H]thymidine-labeled tectal cells to a position caudal to these same cells during the latter half of larval development. This represents a movement of approximately 1.4 mm across the tectal surface between stages T&K XII and T&K XXV. In addition, we have used electron microscopy and electrophysiology to demonstrate that the RGC terminals make functional synaptic connections during this period. This indicates that RGC terminals continually change the tectal neurons with which they form functional synapses during the development of the retinotectal system. We propose that such moving, but highly ordered connections can best be explained by a two stage mechanism for map formation, in which graded selective adhesions between cells in appropriate regions of retina and tectum provide the overall gross retinotopy of the projection, while competitive interactions between RGC terminals are responsible for the refinement of the precision in this system.

摘要

在脊椎动物的中枢神经系统中,相互连接的神经元群体在发育过程中的组织发生和分化的整体拓扑模式通常并不匹配。这种不匹配的一个显著例子是青蛙的视网膜 - 顶盖系统,其中视网膜以同心环的形式生长,而作为视网膜主要靶标的视顶盖仅在尾内侧边缘添加新神经元。然而,在这两个结构经历如此不同生长模式的时期,视网膜神经节细胞(RGC)的终末在顶盖中形成了一个有组织的图谱。这使得盖兹等人(盖兹,R.M.,M.J.基廷和S.H.钟(1974年)《伦敦皇家学会学报》(生物)185:301 - 330)提出,在发育过程中终末必定会向尾侧移动。在本研究中,我们通过选择性标记一组已确定的RGC终末,即视神经乳头(ONH)处的终末,并确定它们相对于一组特定的[³H]胸腺嘧啶核苷标记的顶盖神经元的顶盖投射位点,直接检验了“连接移位”假说。通过这种双重标记技术,我们发现,在幼体发育的后半期,来自ONH处细胞的RGC终末从位于[³H]胸腺嘧啶核苷标记的顶盖细胞前方的位置移动到了这些相同细胞后方的位置。这代表了在T&K XII期和T&K XXV期之间,终末在顶盖表面移动了约1.4毫米。此外,我们利用电子显微镜和电生理学方法证明,在这一时期RGC终末形成了功能性突触连接。这表明在视网膜 - 顶盖系统的发育过程中,RGC终末不断改变与其形成功能性突触的顶盖神经元。我们提出,这种移动但高度有序的连接最好用一种两阶段的图谱形成机制来解释,其中视网膜和顶盖适当区域的细胞之间的分级选择性黏附提供了投射的整体大致视网膜拓扑结构,而RGC终末之间的竞争性相互作用则负责该系统中精度的细化。

相似文献

1
Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens.
J Neurosci. 1984 Feb;4(2):442-57. doi: 10.1523/JNEUROSCI.04-02-00442.1984.
2
The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
J Comp Neurol. 1983 Aug 10;218(3):282-96. doi: 10.1002/cne.902180305.
4
Evidence for centripetally shifting terminals on the tectum of postmetamorphic Rana pipiens.
J Comp Neurol. 1987 Dec 22;266(4):556-64. doi: 10.1002/cne.902660408.
8
Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
J Neurosci. 2001 Nov 1;21(21):8548-63. doi: 10.1523/JNEUROSCI.21-21-08548.2001.

引用本文的文献

1
Activity-dependent Organization of Topographic Neural Circuits.
Neuroscience. 2023 Jan 1;508:3-18. doi: 10.1016/j.neuroscience.2022.11.032. Epub 2022 Dec 5.
2
Topographic map formation and the effects of NMDA receptor blockade in the developing visual system.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2107899119.
3
NMDARs Translate Sequential Temporal Information into Spatial Maps.
iScience. 2020 Jun 26;23(6):101130. doi: 10.1016/j.isci.2020.101130. Epub 2020 May 1.
5
An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development.
Front Neural Circuits. 2016 Oct 21;10:79. doi: 10.3389/fncir.2016.00079. eCollection 2016.
7
Optic flow instructs retinotopic map formation through a spatial to temporal to spatial transformation of visual information.
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):E5105-13. doi: 10.1073/pnas.1416953111. Epub 2014 Nov 10.
8
Mapping dynamic branch displacements: a versatile method to quantify spatiotemporal neurite dynamics.
Front Neural Circuits. 2011 Sep 30;5:13. doi: 10.3389/fncir.2011.00013. eCollection 2011.
9
In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis.
Front Synaptic Neurosci. 2010 Jun 10;2:7. doi: 10.3389/fnsyn.2010.00007. eCollection 2010.
10
Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana).
Brain Behav Evol. 2010;76(3-4):226-47. doi: 10.1159/000322550. Epub 2011 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验