Henderson G B, Montague-Wilkie B
Biochim Biophys Acta. 1983 Oct 26;735(1):123-30. doi: 10.1016/0005-2736(83)90267-5.
Methotrexate, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide react to form an activated ester of methotrexate which is a potent irreversible inhibitor of methotrexate transport in L1210 cells. In cells treated with the reagent at 37 degrees C, inhibition was rapid (t1/2 less than 1 min), optimal at pH 6.8, half-maximal at an inhibitor concentration of 20 nM, and complete at high levels of the reagent. Specificity was indicated by the fact that excess methotrexate added during the pretreatment step protected the transport system against inactivation. Irreversible inhibition was also observed in cells exposed to the reagent at 4 degrees C. Inactivation in this case was qualitatively similar to the corresponding process at 37 degrees C; it appeared rapidly, was half-maximal at 20 nM, and could be prevented by the addition of high concentrations of the substrate. The extent of the inhibition, however, reached a maximum of only 75%, even in samples containing excess or multiple additions of reagent. The latter findings suggest that at 4 degrees C the transport protein exists in two forms, one (75% of the total) containing binding sites which are accessible to the active ester, and the other (25% of the total) with inaccessible sites. The identity of these sites is suggested to be transport proteins which have outward and inward orientations, respectively.