Mims M P, Porras A G, Olson J S, Noble R W, Peterson J A
J Biol Chem. 1983 Dec 10;258(23):14219-32.
The O2, CO, and alkyl isocyanide-binding properties of a variety of vertebrate and invertebrate heme proteins have been compared in detail to those of protoheme mono-3-(1-imidazoyl)-propylamide monomethyl ester in aqueous suspensions of soap micelles. The proteins examined include: cytochrome P-450cam from Pseudomonas putida, beef heart cytochrome c oxidase, yeast cytochrome c peroxidase, alpha and beta subunits of human hemoglobin, sheep hemoglobin, carp hemoglobin, sperm whale myoglobin, horse heart myoglobin, a monomeric hemoglobin from Glycera dibranchiata, erythrocruorin from Chironomusthummii, soybean leghemoglobin, and several hemoglobins that lack distal histidines. The smallest bimolecular rates were observed for cytochrome P-450 containing bound camphor, cytochrome c oxidase, and cytochrome c peroxidase. In the case of P-450, the extremely low isonitrile binding rates (approximately 1 M-1 S-1 at 20 degrees C) are due to steric exclusion by bound camphor molecules. For the oxidase and peroxidase, inhibition of CO and isonitrile binding appears to be due to the polar nature of the active sites. In the cases of animal hemoglobins and myoglobins, the sixth coordination positions appear to be designed to accommodate diatomic molecules with no steric hindrance by distal protein residues. Protein resistance to the diffusion of CO and O2 does not limit the observed association rate constants. In contrast, ligands containing three or more atoms are sterically hindered both in their final bound positions and during diffusion to the active site. The magnitude of this hindrance (greater than or equal to 2 kcal/mol) exhibits a complex dependence on ligand size and shape. The most important protein residue appears to be His E7. In addition to restricting the size of the sixth coordination position, the distal histidine is also capable of forming a hydrogen bond with bound oxygen molecules. The strength of this hydrogen bond was estimated to be -2 and -1 kcal/mol for mammalian myoglobins and hemoglobins, respectively, and accounts for the smaller CO/O2 partition constants (M values) observed for these proteins in comparison to the constants observed for pentacoordinate model heme compounds.
在肥皂胶束的水悬浮液中,已详细比较了多种脊椎动物和无脊椎动物血红素蛋白与原血红素单 - 3 -(1 - 咪唑基)丙基酰胺单甲酯的氧气、一氧化碳和烷基异腈结合特性。所检测的蛋白质包括:恶臭假单胞菌的细胞色素P - 450cam、牛心细胞色素c氧化酶、酵母细胞色素c过氧化物酶、人血红蛋白的α和β亚基、羊血红蛋白、鲤鱼血红蛋白、抹香鲸肌红蛋白、马心肌红蛋白、双齿围沙蚕的单体血红蛋白、摇蚊血红素、大豆豆血红蛋白,以及几种缺乏远端组氨酸的血红蛋白。细胞色素P - 450结合樟脑、细胞色素c氧化酶和细胞色素c过氧化物酶的双分子速率最小。就P - 450而言,极低的异腈结合速率(20℃时约为1 M⁻¹ s⁻¹)是由于结合的樟脑分子产生的空间排斥。对于氧化酶和过氧化物酶,一氧化碳和异腈结合的抑制似乎是由于活性位点的极性性质。在动物血红蛋白和肌红蛋白的情况下,第六配位位置似乎设计用于容纳双原子分子,而不受远端蛋白质残基的空间位阻。蛋白质对一氧化碳和氧气扩散的阻力并不限制观察到的缔合速率常数。相比之下,含有三个或更多原子的配体在其最终结合位置以及扩散到活性位点的过程中都受到空间位阻。这种位阻的大小(大于或等于2千卡/摩尔)对配体大小和形状呈现出复杂的依赖性。最重要的蛋白质残基似乎是His E7。除了限制第六配位位置的大小外,远端组氨酸还能够与结合的氧分子形成氢键。据估计,哺乳动物肌红蛋白和血红蛋白的这种氢键强度分别为 - 2和 - 1千卡/摩尔,这解释了与五配位模型血红素化合物相比,这些蛋白质观察到的较小的一氧化碳/氧气分配常数(M值)。