Siler W
Stat Med. 1983 Jul-Sep;2(3):373-80. doi: 10.1002/sim.4780020309.
A three-component, competing-risk mortality model, developed for animal survival data, fits human life table data for all ages over a range of mean life spans from 16 to 74 years. The competing risks are a novel exponentially-decreasing hazard, dominant during immaturity; a constant hazard, dominant during adulthood; and an exponentially increasing Gompertzian hazard, dominant during senescence. By fitting the model to a specific life table using non-linear techniques, estimates of the five model parameters and their standard errors obtain; the proportion of deaths expected from each hazard alone may then be calculated. Preliminary analysis of 13 life tables indicates that for human populations under heavy stress, with very short mean life spans of about 20 years, the three hazard components account for roughly equal numbers of deaths; for modern populations, with mean life spans of about 75 years, nearly all deaths are due to the hazard of senescence. Factor analysis of the correlation matrix of parameter values for the 13 populations shows a two-factor structure. One factor involves only the multiplicative constants (initial values) of the three hazards, but not the hazard rates of change; the second factor involves only the parameter of the immaturity hazard and the rate of acceleration of the senescence hazard, but not the constant hazard nor the multiplicative constant (initial value) of the senescence hazard.
一种为动物生存数据开发的三成分竞争风险死亡率模型,适用于平均寿命从16岁到74岁范围内所有年龄段的人类生命表数据。竞争风险包括一种新颖的指数递减风险,在不成熟期占主导;一种恒定风险,在成年期占主导;以及一种指数增加的冈珀茨风险,在衰老期占主导。通过使用非线性技术将模型拟合到特定生命表,可以获得五个模型参数及其标准误差的估计值;然后可以计算仅由每种风险预期的死亡比例。对13个生命表的初步分析表明,对于承受巨大压力、平均寿命约为20年的非常短的人群,三种风险成分导致的死亡人数大致相等;对于平均寿命约为75岁的现代人群,几乎所有死亡都归因于衰老风险。对13个人群参数值相关矩阵的因子分析显示出双因子结构。一个因子仅涉及三种风险的乘法常数(初始值),而不涉及风险变化率;第二个因子仅涉及不成熟风险的参数和衰老风险的加速率,而不涉及恒定风险和衰老风险的乘法常数(初始值)。