Ikebe M, Hinkins S, Hartshorne D J
J Biol Chem. 1983 Dec 25;258(24):14770-3.
The addition of ATP to turkey gizzard myosin causes an enhancement of the intrinsic tryptophan fluorescence. The level of fluorescence enhancement is determined by the myosin conformation. The transition of myosin from the folded (10 S) state to the extended (6 S) state is accompanied by a decrease in the fluorescence level. Phosphorylation-dephosphorylation of myosin does not directly influence fluorescence and will induce changes only if the myosin conformation is altered. Under the appropriate conditions, phosphorylation of myosin favors the transition of 10 S to 6 S. The phosphorylation dependence of the associated fluorescence decrease is not linear, and it is proposed that the phosphorylation of both light chains is required for the full transition. The tryptophan residues involved respond to the binding of ATP at the hydrolytic sites. Since the fluorescence properties of gizzard myosin are influenced by the myosin conformation, it is reasonable to assume that the active sites are also modified by the shape of the myosin molecule.