Standeven J W, Jellinek M, Menz L J, Kolata R J, Barner H B
J Thorac Cardiovasc Surg. 1984 Feb;87(2):201-12.
Despite the use of cold blood potassium (CBK) cardioplegia, the severely impaired myocardium and/or long ischemia time continue to be a challenge. Because of the association of Ca++ with cell injury and death, the use of Ca++ entry blockers is logical. Investigation of cold blood diltiazem (CBD) revealed no advantages over CBK cardioplegia. The combination of potassium and diltiazem is appropriate because of their different mechanisms of action. Ten dogs had 1 hour of myocardial ischemia with topical ice (temperature 7 degrees +/- 2 degrees C) after coronary perfusion with 200 ml of cold blood (5 degrees +/- 1 degree C) containing potassium (30 mEq/L) and diltiazem (400 micrograms/kg). Eight dogs had 2 hours of ischemia after perfusion with 200 ml of cold blood containing potassium (30 mEq/L) and diltiazem (200 micrograms/kg) and reperfusion every 30 minutes with 100 ml of cold blood containing KCl (30 mEq/L) and diltiazem (100 micrograms/kg). Six dogs received the same treatment as the previous group except that diltiazem was increased to 1,600 micrograms/kg for all four perfusions. Baseline studies were repeated after 60 minutes of reperfusion without the use of Ca++ or inotropic agents. Heart rate, peak systolic pressure, velocity of the contractile element (Vce), maximum velocity of contractile element (Vmax), peak +dp/dt, peak -dp/dt, dp/dt over common peak isovolumic pressure, left ventricular compliance, stiffness and elasticity, and heart water were unchanged from control. Coronary vascular resistance was unchanged in Groups 1 and 2 but declined in Group 3. Creatine phosphate was preserved during ischemia; adenosine triphosphate (ATP) declined. With reperfusion there was continued fall in ATP, ADP, and the adenosine pool. Ultrastructure was well preserved. In 16 of 24 dogs defibrillation was not required, whereas all 48 dogs with CBK and all 13 with CBD required defibrillation. These data suggest that the addition of diltiazem to CBK provides more effective cardioplegia (preservation of creatine phosphate), although ATP and the adenosine pool continued to decline with reperfusion.
尽管使用了冷血钾(CBK)心脏停搏液,但严重受损的心肌和/或较长的缺血时间仍然是一个挑战。由于钙离子与细胞损伤和死亡相关,使用钙离子通道阻滞剂是合理的。对冷血地尔硫䓬(CBD)的研究表明,它相对于CBK心脏停搏液并无优势。钾和地尔硫䓬联合使用是合适的,因为它们的作用机制不同。十只狗在冠状动脉灌注200毫升含有钾(30毫当量/升)和地尔硫䓬(400微克/千克)的冷血(5摄氏度±1摄氏度)后,用局部冰(温度7摄氏度±2摄氏度)进行1小时的心肌缺血。八只狗在灌注200毫升含有钾(30毫当量/升)和地尔硫䓬(200微克/千克)的冷血后进行2小时的缺血,并每隔30分钟用100毫升含有氯化钾(30毫当量/升)和地尔硫䓬(100微克/千克)的冷血进行再灌注。六只狗接受与前一组相同的治疗,只是在所有四次灌注中地尔硫䓬增加到1600微克/千克。在不使用钙离子或正性肌力药物的情况下,再灌注60分钟后重复进行基线研究。心率、收缩压峰值、收缩元件速度(Vce)、收缩元件最大速度(Vmax)、峰值 +dp/dt、峰值 -dp/dt、dp/dt超过共同峰值等容压力、左心室顺应性、僵硬度和弹性以及心脏含水量与对照组相比无变化。第1组和第2组的冠状动脉血管阻力无变化,但第3组下降。磷酸肌酸在缺血期间得以保留;三磷酸腺苷(ATP)下降。再灌注时,ATP、二磷酸腺苷(ADP)和腺苷池持续下降。超微结构保存良好。24只狗中有16只不需要除颤,而所有48只接受CBK治疗的狗和所有13只接受CBD治疗的狗都需要除颤。这些数据表明,在CBK中添加地尔硫䓬可提供更有效的心脏停搏(磷酸肌酸的保留),尽管再灌注时ATP和腺苷池持续下降。