Fesik S W, Armitage I M, Ellestad G A, McGahren W J
Mol Pharmacol. 1984 Mar;25(2):281-6.
On the basis of nuclear Overhauser enhancement and 1H chemical shift data obtained in aqueous solution, a model is proposed for the interaction of beta-avoparcin and epi-beta-avoparcin with acetyl-D-alanyl-D-alanine (Ac-D-Ala-D-Ala) and diacetyl-L-lysyl-D-alanyl-D-alanine (Ac2-L-Lys-D-Ala-D-Ala). For the beta-avoparcin: Ac2-L-Lys-D-Ala-Ala complex, the COOH-terminal end of the tripeptide is located near the NH2 terminus of the antibiotic with the tripeptide extending across the peptide backbone of beta-avoparcin toward its COOH-terminal end. In our proposed structure, the three amino acid residues of the peptide span the entire length of the antibiotic, and the aliphatic side chain of the lysine residue extends over the D-ring of beta-avoparcin. The structure of the epi-beta-avoparcin:Ac2-L-Lys-D-Ala-D-Ala complex was found to be similar to the beta-avoparcin complex at the binding site for the lysine residue at the COOH-terminal end of the antibiotic, but differed in the interactions at the NH2 terminus. These results are consistent with the similarities in the COOH-terminal conformations and the differences in conformations at the NH2 terminus found for beta-avoparcin and epi-beta-avoparcin which were described in the preceding paper [Fesik, S. W., I. M. Armitage, G. A. Ellestad, and W. J. McGahren, Mol. Pharmacol. 25:275-280 (1984)]. The association constants (measured by UV methods) for both beta-avoparcin:peptide complexes were greater than those measured for epi-beta-avoparcin and correlated with their differences in antibacterial activity. Epi-beta-avoparcin exhibited no measurable binding to the dipeptide: however, a significant affinity was measured for the tripeptide, indicating that the interactions with the NH2 terminus of the antibiotics provide binding energy for the antibiotic peptide complex but that the COOH-terminal end of the antibiotics also plays an important role in the binding interaction. These results are interesting in light of the similarities in the structural and conformational features at the COOH terminus for all of the glycopeptide antibiotics.
基于在水溶液中获得的核Overhauser增强效应和1H化学位移数据,提出了一个关于β-阿伏帕星和表β-阿伏帕星与乙酰-D-丙氨酰-D-丙氨酸(Ac-D-Ala-D-Ala)以及二乙酰-L-赖氨酰-D-丙氨酰-D-丙氨酸(Ac2-L-Lys-D-Ala-D-Ala)相互作用的模型。对于β-阿伏帕星:Ac2-L-Lys-D-Ala-Ala复合物,三肽的COOH末端位于抗生素的NH2末端附近,三肽跨过β-阿伏帕星的肽主链向其COOH末端延伸。在我们提出的结构中,肽的三个氨基酸残基跨越抗生素的整个长度,赖氨酸残基的脂肪族侧链延伸到β-阿伏帕星的D环上。发现表β-阿伏帕星:Ac2-L-Lys-D-Ala-D-Ala复合物的结构在抗生素COOH末端赖氨酸残基的结合位点处与β-阿伏帕星复合物相似,但在NH2末端的相互作用上有所不同。这些结果与前一篇论文[Fesik, S. W., I. M. Armitage, G. A. Ellestad, and W. J. McGahren, Mol. Pharmacol. 25:275 - 280 (1984)]中描述的β-阿伏帕星和表β-阿伏帕星在COOH末端构象的相似性以及NH2末端构象的差异一致。两种β-阿伏帕星:肽复合物的缔合常数(通过紫外方法测量)大于表β-阿伏帕星的测量值,并且与它们在抗菌活性上的差异相关。表β-阿伏帕星与二肽没有可测量的结合;然而,对三肽测量到显著的亲和力,表明与抗生素NH2末端的相互作用为抗生素 - 肽复合物提供结合能,但抗生素的COOH末端在结合相互作用中也起重要作用。鉴于所有糖肽类抗生素在COOH末端的结构和构象特征的相似性,这些结果很有趣。