Suppr超能文献

用电视网膜图研究异常(RCS)大鼠的暗适应。

Dark-adaptation in abnormal (RCS) rats studied electroretinographically.

作者信息

Perlman I

出版信息

J Physiol. 1978 May;278:161-75. doi: 10.1113/jphysiol.1978.sp012298.

Abstract
  1. Electroretinogram (e.r.g.) responses recorded from dark-reared rats with inherited retinal dystrophy (RCS) showed progressive decline in b-wave ampliture and prolongation of the time to the peak of the b-wave with age when compared with records obtained from dark-reared normal albino rats. 2. Dark-adaptation was followed in RCS and normal rats by recording the light intensity needed to evoke a criterion e.r.g. response at different time intervals after bleaching and 90% of the rhodopsin. 3. In normal rats, dark-adaptation was governed by two mechanisms. The first 25--35 min of recovery was determined by cones. The second branch, determined by the recovery of rods, lasted for about 3 hr and proceeded along an exponential time course with time constant of 41.4 +/- 2.4 min (S.E. of mean). 4. In RCS rats, the time course of the dark-adaptation after a 90% bleach depended on age. In 25--30 day old rats the recovery curve had at least three breaks separating three different mechanisms. Rats, 35--40 days old, exhibited double exponential recovery curves, while 45--70 day old rats recovered along a single exponential curve similar in time course to the cone branch of dark-adaptation found in normal rats. 5. Action spectra obtained from RCS rats at different time intervals of the recovery curve showed that in young rats, 25--30 days old, small e.r.g. responses recorded before bleaching and at the end of the recovery period were determined by rhodopsin while those recorded during the first part of the recovery from 90% bleach were determined by a combination of rods and cones. In RCS rats of advanced age (45--70 days old), rhodopsin was the major contributor to the e.r.g. responses recorded either before bleaching or at the end of the recovery period. 6. The gradual deterioration with age of the e.r.g. in RCS rats cannot be explained by either the decrease in quantum catch due to the decrease in rhodopsin content or by the linear relationship between log e.r.g. threshold and pigment concentration. 7. Using estimates of rhodopsin density within surviving rods obtained from retinal densitometry, it was shown that in RCS rats where more than 30% of normal levels of rhodopsin was located within the functioning rods, the log intensity needed for a criterion e.r.g. response measured at the end of the recovery period from a 90% bleach was linearly related to the fraction of 'functional' rhodopsin. 8. No simple relationship between log e.r.g. threshold and rhodopsin concentration could be found during the course of recovery in the dark from a strong bleaching exposure in RCS rats of all ages.
摘要
  1. 与黑暗饲养的正常白化大鼠的记录相比,从患有遗传性视网膜营养不良(RCS)的黑暗饲养大鼠记录的视网膜电图(e.r.g.)反应显示,随着年龄增长,b波振幅逐渐下降,b波峰值时间延长。2. 通过记录在漂白和90%视紫红质后不同时间间隔诱发标准e.r.g.反应所需的光强度,对RCS大鼠和正常大鼠进行暗适应跟踪。3. 在正常大鼠中,暗适应由两种机制控制。恢复的前25 - 35分钟由视锥细胞决定。由视杆细胞恢复决定的第二条曲线持续约3小时,并沿指数时间进程进行,时间常数为41.4±2.4分钟(平均值的标准误差)。4. 在RCS大鼠中,90%漂白后的暗适应时间进程取决于年龄。在25 - 30日龄的大鼠中,恢复曲线至少有三个断点,分隔三种不同机制。35 - 40日龄的大鼠表现出双指数恢复曲线,而45 - 70日龄的大鼠沿单一指数曲线恢复,时间进程与正常大鼠暗适应的视锥细胞分支相似。5. 在恢复曲线的不同时间间隔从RCS大鼠获得的作用光谱表明,在25 - 30日龄的幼鼠中,漂白前和恢复期结束时记录的小e.r.g.反应由视紫红质决定,而在90%漂白后恢复的第一部分期间记录的反应由视杆细胞和视锥细胞共同决定。在老龄(45 - 70日龄)的RCS大鼠中,视紫红质是漂白前或恢复期结束时记录的e.r.g.反应的主要贡献者。6. RCS大鼠中e.r.g.随年龄的逐渐恶化,既不能用视紫红质含量减少导致的量子捕获减少来解释,也不能用log e.r.g.阈值与色素浓度之间的线性关系来解释。7. 使用从视网膜密度测定获得的存活视杆细胞内视紫红质密度估计值表明,在RCS大鼠中,超过30%正常水平的视紫红质位于功能正常的视杆细胞内,从90%漂白恢复期结束时测量标准e.r.g.反应所需的log强度与“功能性”视紫红质的比例呈线性相关。8. 在所有年龄段的RCS大鼠从强光漂白暴露后黑暗恢复过程中,未发现log e.r.g.阈值与视紫红质浓度之间存在简单关系。

相似文献

3
Rhodopsin kinetics in the human eye.人眼中视紫红质的动力学
J Physiol. 1971 Sep;217(2):447-71. doi: 10.1113/jphysiol.1971.sp009580.
6
Rhodopsin bleaching signals in essential night blindness.原发性夜盲症中的视紫红质漂白信号
J Physiol. 1972 Sep;225(2):457-76. doi: 10.1113/jphysiol.1972.sp009949.

引用本文的文献

4
Melatonin modulates M4-type ganglion-cell photoreceptors.褪黑素调节M4型神经节细胞光感受器。
Neuroscience. 2015 Sep 10;303:178-88. doi: 10.1016/j.neuroscience.2015.06.046. Epub 2015 Jul 2.

本文引用的文献

1
QUANTUM RELATIONS OF THE RAT ELECTRORETINOGRAM.大鼠视网膜电图的量子关系
J Gen Physiol. 1963 Jul;46(6):1267-86. doi: 10.1085/jgp.46.6.1267.
2
Inherited retinal dystrophy in the rat.大鼠遗传性视网膜营养不良
J Cell Biol. 1962 Jul;14(1):73-109. doi: 10.1083/jcb.14.1.73.
4
Chemistry of visual adaptation in the rat.大鼠视觉适应的化学过程
Nature. 1960 Oct 8;188:114-8. doi: 10.1038/188114a0.
5
Dominant retinitis pigmentosa with reduced penetrance.显性视网膜色素变性伴外显率降低。
Arch Ophthalmol. 1969 Feb;81(2):226-34. doi: 10.1001/archopht.1969.00990010228013.
6
Rod and cone responses in sex-linked retinitis pigmentosa.性连锁视网膜色素变性中的视杆和视锥细胞反应
Arch Ophthalmol. 1969 Feb;81(2):215-25. doi: 10.1001/archopht.1969.00990010217012.
7
Rod responses in retinitis pigmentosa, dominantly inherited.视网膜色素变性的视杆细胞反应,显性遗传。
Arch Ophthalmol. 1968 Jul;80(1):58-67. doi: 10.1001/archopht.1968.00980050060009.
9
Visual adaptation in the retina of the skate.鳐鱼视网膜中的视觉适应。
J Gen Physiol. 1970 Oct;56(4):491-520. doi: 10.1085/jgp.56.4.491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验