Suppr超能文献

Nucleotide in monomeric actin regulates the reactivity of the thiol groups.

作者信息

Faulstich H, Merkler I, Blackholm H, Stournaras C

出版信息

Biochemistry. 1984 Apr 10;23(8):1608-12. doi: 10.1021/bi00303a004.

Abstract

A new thiol reagent, 2,4-dinitrophenyl glutathionyl disulfide, allowed the characterization of four thiol groups in monomeric actin by stoichiometric reaction. The number of thiol groups exposed to the reagent was found to depend on the nucleotide bound. In the absence of ATP, G-actin exposed four thiol groups ( G4s ). On the addition of ATP (1 equiv), three of them were shielded. The resulting actin with one thiol group exposed ( G1s ) is the form of monomeric actin normally produced by depolymerization of F-actin in buffers containing ATP. G1s is stable over hours, while G4s , i.e., monomeric actin in ATP-free solution, is not. This must be concluded from the fact that the shielding effect of thiol groups induced by addition of ATP was lost within ca. 30 min probably due to denaturation of G4s to G4s *. Therefore, denaturation of monomeric actin must be understood in terms of loss of thiol shielding, rather than by oxidation of the thiol groups. Addition of equimolar amounts of Ca2+ significantly retarded the denaturation process. ADP (50 equiv) shielded only ca. two of the four thiol groups but, similar to ATP, protected actin from denaturation. Three ATP analogues (10 equiv) were tested but had no shielding effect. In the presence of these analogues actin ( G4s ) rapidly denatured (to G4s *) as in the absence of added nucleotides. It was shown that the thiol-shielding activity and the protective capacity of a nucleotide are interrelated with its binding capability to monomeric actin. G1s was found to be polymerizable as was G approximately 2s on the addition of ATP. No polymerization could be detected for G4s or G4s *.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验