Wehrli F W, MacFall J R, Shutts D, Breger R, Herfkens R J
J Comput Assist Tomogr. 1984 Jun;8(3):369-80. doi: 10.1097/00004728-198406000-00001.
Nuclear magnetic resonance pixel intensity and contrast-to-noise has been computed and presented in graphical form for various tissues in the normal central nervous system, on the assumption that the signal intensity is proportional to the macroscopic transverse spin magnetization at the time of detection. T1, T2, and spin density values were experimentally determined using chi-square minimization techniques. Additionally, spin density was derived from partial saturation scans obtained with a long repetition time compared with the spin-lattice relaxation time. Pulse sequences discussed comprise partial saturation, saturation recovery, spin echo, and Carr- Purcell - Meiboom -Gill ( CPMG ). The complicated dependence of signal and contrast-to-noise on the pulse timing parameters and the specific pulse sequence makes it appear desirable to display image intensity so that the dependence on the extrinsic (operator-selectable parameter) is eliminated. Whereas T2 images can be derived from CPMG scans without excessive time penalty, this is not the case for T1 and spin density.
在假设信号强度与检测时的宏观横向自旋磁化强度成正比的前提下,已计算出正常中枢神经系统中各种组织的核磁共振像素强度和对比度噪声,并以图形形式呈现。使用卡方最小化技术通过实验确定了T1、T2和自旋密度值。此外,与自旋晶格弛豫时间相比,自旋密度是从具有长重复时间的部分饱和扫描中得出的。所讨论的脉冲序列包括部分饱和、饱和恢复、自旋回波和Carr-Purcell-Meiboom-Gill(CPMG)。信号和对比度噪声对脉冲定时参数和特定脉冲序列的复杂依赖性使得显示图像强度似乎很有必要,这样就消除了对外部(操作员可选择参数)的依赖性。虽然T2图像可以从CPMG扫描中得出而不会有过多的时间代价,但T1和自旋密度的情况并非如此。