Turnbull B W, Mitchell T J
Biometrics. 1984 Mar;40(1):41-50.
This paper concerns the analysis of an animal survival/sacrifice experiment designed to investigate the incidence of a particular disease of interest. The disease is assumed to be irreversible, and detectable only at death, for example by a necropsy. Each observation can be of one of three types: (i) death caused by the disease, (ii) death from a competing cause such as sacrifice, with the disease present, or (iii) death with the disease absent. A two-dimensional EM algorithm is proposed for the nonparametric maximum likelihood estimation of the distributions of the time to onset and of the time to death from the disease. These can be compared with nonparametric estimators recently proposed by Kodell , Shaw and Johnson (1982, Biometrics 38, 43-58) and by Dinse and Lagakos (1982, Biometrics 38, 921-932). A slight modification of the algorithm permits the construction of likelihood-based interval estimates of quantiles of the distributions. Some extensions and generalizations are indicated.
本文涉及一项动物生存/牺牲实验的分析,该实验旨在调查一种特定目标疾病的发病率。假定该疾病是不可逆的,且只有在死亡时才能检测到,例如通过尸检。每次观察可以是以下三种类型之一:(i)由该疾病导致的死亡,(ii)因诸如牺牲等竞争原因导致的死亡(疾病存在),或(iii)疾病不存在时的死亡。提出了一种二维期望最大化(EM)算法,用于对疾病发病时间和疾病导致死亡时间的分布进行非参数最大似然估计。这些估计可以与科德尔、肖和约翰逊(1982年,《生物统计学》38卷,43 - 58页)以及丁斯和拉加科斯(1982年,《生物统计学》38卷,921 - 932页)最近提出的非参数估计量进行比较。对该算法稍作修改就可以构建基于似然的分布分位数区间估计。文中还指出了一些扩展和推广内容。