Suppr超能文献

生存/处死实验疾病患病率数据分析中的对数线性模型

Log-linear models in the analysis of disease prevalence data from survival/sacrifice experiments.

作者信息

Mitchell T J, Turnbull B W

出版信息

Biometrics. 1979 Mar;35(1):221-34.

PMID:315241
Abstract

This paper considers the problem of analyzing disease prevalence data from survival experiments in which there may also be some serial sacrifice. The assumptions needed for "standard" analyses are reviewed in the context of a general model recently proposed by the authors. This model is then reparametrized in log-linear form, and a generalized EM algorithm is utilized to obtain maximum likelihood estimates of the parameters for a broad class of unsaturated models. Tests based on the relative likelihood are proposed to investigate the effects of treatment, time, and the presence of other diseases on the prevalences and lethalities of specific diseases of interest. An example is given, using data from a large experiment to investigate the effects of low-level radiation on laboratory mice. Finally, some possible directions for future research are indicated.

摘要

本文考虑了分析来自生存实验的疾病患病率数据的问题,在这些实验中可能还存在一些系列牺牲。在作者最近提出的一个通用模型的背景下,回顾了“标准”分析所需的假设。然后将该模型重新参数化为对数线性形式,并利用广义期望最大化(EM)算法获得一大类不饱和模型参数的最大似然估计。提出了基于相对似然的检验,以研究治疗、时间以及其他疾病的存在对感兴趣的特定疾病的患病率和致死率的影响。给出了一个例子,使用来自一项大型实验的数据来研究低水平辐射对实验室小鼠的影响。最后,指出了一些未来研究的可能方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验