Suppr超能文献

Air resistance and its influence on the biomechanics and energetics of sprinting at sea level and at altitude.

作者信息

Ward-Smith A J

出版信息

J Biomech. 1984;17(5):339-47. doi: 10.1016/0021-9290(84)90028-9.

Abstract

Following an examination of the processes by which chemical energy is converted into useful work during running, a mathematical model of the energetics of sprinting is constructed. This is used in conjunction with a careful analysis of Olympic records, in particular those obtained in the 1968 Games at Mexico City, to determine the magnitude of the rate of working against air resistance during running. It is established that times in the 100 m, 200 m and 400 m events at the Mexico Olympics were approximately 1.7% lower than they would otherwise have been if the races had been run at sea level. This information is used to deduce that the external work done per unit time against air resistance is about 7.5-9% of the total power output of a sprinter, running at maximum speed at sea level. These figures compare well with the value of 7.8% obtained independently by Davies (J. appl. Physiol 48, 702-709, 1980). The analysis provides evidence that a linear relation exists between running speed and the rate of degradation of mechanical energy into thermal energy up to the highest sprinting speeds attainable. The maximum power generated by a sprinter is approximately 3 kW.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验