Suppr超能文献

关于酶促凝血过程V. 凝血物质任意生成速率情况下的速率方程

On enzymic clotting processes V. rate equations for the case of arbitrary rate of production of the clotting species.

作者信息

Payens T A, Wiersma A K

出版信息

Biophys Chem. 1980 Apr;11(2):137-46. doi: 10.1016/0301-4622(80)80016-0.

Abstract

The rate theory for enzyme-triggered coagulation reactions, such as the clotting of fibrin or casein, is extended to the case of an arbitrary rate of production of the clotting species. It is shown that the general expression for the growth of the weight-average molecular weight of the clotting product, MW, is given by MW = M1 [1 + ks[integral of 0tP(t)2dt]/P(t)], where M1 is the "monomer" molecular weigt, ks the smoluchowskian flocculation rate constant and P(t) the total number of monomers produced by the enzyme in t. In the purely smoluchowskian case P(t) stands for the total number of monomers at the beginning of the clotting process. Numerical examples in which the rate of enzymic production is governed by complete Michaelis-Menten kinetics, are compared to cases in which this rate equals Vmax. It is shown that after exhaustion of the substrate the system continues to coagulate in a purely smoluchowskian way. Turbidimetric experiments on the clotting of micelles of whole and kappa-casein are presented which suggest inactivation of the enzyme by non-productive binding in the flocs formed.

摘要

酶引发的凝血反应速率理论,如纤维蛋白或酪蛋白的凝结,被扩展到凝血物种生成速率任意的情况。结果表明,凝血产物重均分子量MW增长的一般表达式为MW = M1 [1 + ks[从0到t对P(t)²的积分]/P(t)],其中M1是“单体”分子量,ks是斯莫卢霍夫斯基絮凝速率常数,P(t)是酶在t时间内产生的单体总数。在纯斯莫卢霍夫斯基情况下,P(t)代表凝血过程开始时的单体总数。将酶产生速率受完整米氏动力学支配的数值示例与该速率等于Vmax的情况进行了比较。结果表明,底物耗尽后,系统以纯斯莫卢霍夫斯基方式继续凝结。给出了关于全酪蛋白和κ-酪蛋白胶束凝结的比浊实验,这些实验表明酶在形成的絮凝物中通过非生产性结合而失活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验