Bass D A, O'Flaherty J T, Szejda P, DeChatelet L R, McCall C E
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5125-9. doi: 10.1073/pnas.77.9.5125.
Whereas insulin does not stimulate hexose transport in polymorphonuclear leukocytes, we recently reported that C5a causes the leukocytes to take up 2-[(3)H]deoxyglucose. We now find that fMet-Leu-Phe, in a concentration-related manner with an EC(50) (concentration producing 50% of stimulatory activity) of 1.2 nM, causes a 5.5-fold stimulation of deoxyglucose uptake. Moreover, arachidonic acid (5,8,11,14-eicosatetraenoic acid) similarly stimulated deoxyglucose uptake with an EC(50) of 0.6 muM. Stimulation by arachidonic acid exhibited structural specificity; five structural analogues of arachidonic acid, including arachidonyl alcohol, 8,11,14-eicosatrienoic acid, 11,14,17-eicosatrienoic acid, 5,8,11,14-eicosatetraynoic acid, and arachidic acid, did not stimulate deoxyglucose uptake. Release and metabolism of arachidonic acid may also be involved in the stimulation of deoxyglucose uptake by fMet-Leu-Phe. Inhibitors of arachidonic acid metabolism (5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, indomethacin, aspirin, and benzylimidazole) caused parallel changes in the responses to both arachidonic acid and fMet-Leu-Phe. Stimulation of deoxyglucose uptake of polymorphonuclear leukocytes by chemotactic factors or arachidonic acid had the characteristics of carrier-facilitated hexose transport. The response was saturable with increasing concentrations of stimulant or substrate (deoxyglucose). It was stereospecific (inhibited by D-glucose but not by L-glucose) and was inhibited in resting and stimulated cells by 5 mug of cytochalasin B per ml. It was separable from the stimulation of oxidative metabolism; it occurred normally in polymorphonuclear leukocytes from a patient with chronic granulomatous disease (these are incapable of an oxidative metabolic response to membrane stimuli). Thus, stimulation of polymorphonuclear leukocytes is associated with enhanced hexose transport. Moreover, carrier-facilitated hexose transport and arachidonic acid metabolism may be linked, at least in these leukocytes: arachidonic acid mimies the stimulatory effects of chemotactic factors, and blockade of arachidonic acid metabolism inhibits the stimulation of hexose transport by these agents.
虽然胰岛素不会刺激多形核白细胞摄取己糖,但我们最近报道,C5a可使白细胞摄取2-[(3)H]脱氧葡萄糖。我们现在发现,甲酰甲硫氨酰-亮氨酰-苯丙氨酸(fMet-Leu-Phe)以浓度相关的方式刺激脱氧葡萄糖摄取,其半数有效浓度(EC(50),即产生50%刺激活性的浓度)为1.2 nM,可使脱氧葡萄糖摄取增加5.5倍。此外,花生四烯酸(5,8,11,14-二十碳四烯酸)同样刺激脱氧葡萄糖摄取,其EC(50)为0.6 μM。花生四烯酸的刺激表现出结构特异性;花生四烯酸的五种结构类似物,包括花生四烯醇、8,11,14-二十碳三烯酸、11,14,17-二十碳三烯酸、5,8,11,14-二十碳四炔酸和花生酸,均不刺激脱氧葡萄糖摄取。花生四烯酸的释放和代谢可能也参与了fMet-Leu-Phe对脱氧葡萄糖摄取的刺激作用。花生四烯酸代谢抑制剂(5,8,11,14-二十碳四炔酸、去甲二氢愈创木酸、吲哚美辛、阿司匹林和苄基咪唑)可使对花生四烯酸和fMet-Leu-Phe的反应产生平行变化。趋化因子或花生四烯酸对多形核白细胞脱氧葡萄糖摄取的刺激具有载体介导的己糖转运特征。随着刺激物或底物(脱氧葡萄糖)浓度的增加,反应达到饱和。它具有立体特异性(被D-葡萄糖抑制,但不被L-葡萄糖抑制),并且在静息和受刺激的细胞中,每毫升5 μg的细胞松弛素B可抑制该反应。它与氧化代谢的刺激可分离;在慢性肉芽肿病患者的多形核白细胞中正常发生(这些细胞对膜刺激无氧化代谢反应)。因此,多形核白细胞的刺激与增强的己糖转运有关。此外,载体介导的己糖转运和花生四烯酸代谢可能至少在这些白细胞中存在联系:花生四烯酸模拟趋化因子的刺激作用,而花生四烯酸代谢的阻断则抑制这些因子对己糖转运的刺激。