Suppr超能文献

碳水化合物酶作用的范围和机制。葡糖淀粉酶和葡糖右旋糖酐酶对α-和β-D-葡糖基氟化物的立体互补水解和葡糖基转移作用。

Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with alpha- and beta-D-glucosyl fluoride.

作者信息

Kitahata S, Brewer C F, Genghof D S, Sawai T, Hehre E J

出版信息

J Biol Chem. 1981 Jun 25;256(12):6017-26.

PMID:6787047
Abstract

Rhizopus niveus glucoamylase and Arthrobacter globiformis glucodextranase, which catalyze the hydrolysis of starch and dextrans, respectively, to form D-glucose of inverted (beta) configuration, were found to convert both alpha- and beta-D-glucosyl fluoride to beta-D-glucose and hydrogen fluoride. Each enzyme directly hydrolyzes alpha-D-glucosyl fluoride but utilizes th beta-anomer in reactions that require 2 molecules of substrate and yield glucosyl transfer products which are then rapidly hydrolyzed to form beta-D-glucose. Various D-glucopyranosyl compounds serve as acceptors for such reactions. Mixtures of beta-D-glucosyl fluoride and methyl-alpha-D-glucopyranoside[14C], incubated with either enzyme, yielded both methyl-alpha-D-glucopyranosyl-(1 leads to 4)-alpha-D-[14C]glucopyranoside and methyl-alpha-D-glucopyranosyl-(1 leads to 6)-alpha-D-[14C]glucopyranoside. Glucoamylase produced more of the alpha-maltoside; glucodextranase produced more of the alpha-isomaltoside. Thus, both "exo-alpha-glucan hydrolases" emerge as glucosylases that catalyze stereospecifically complementary hydrolytic and transglucosylative reactions with glucosyl donors of opposite configuration. These reactions not only provide a new view of the catalytic capabilities of these supposedly strict hydrolases; they also furnish a basis for defining a detailed mechanism for catalysis. Present results, together with those of several recent studies from this laboratory (especially similar findings obtained with beta-amylase acting on alpha- and beta-maltosyl fluoride (Hehre, E. J., Brewer, C. F., and Genghof, D. S. (1979) J. Biol. Chem. 254, 5942-5950), provide strong new evidence for the functional flexibility of the catalytic groups of carbohydrases.

摘要

雪白根霉葡糖淀粉酶和球形节杆菌葡糖右旋糖酐酶,分别催化淀粉和右旋糖酐的水解,形成具有反转(β)构型的D-葡萄糖,它们能够将α-和β-D-葡糖基氟化物都转化为β-D-葡萄糖和氟化氢。每种酶都能直接水解α-D-葡糖基氟化物,但在需要2分子底物并产生葡糖基转移产物的反应中利用β-异头物,这些产物随后迅速水解形成β-D-葡萄糖。各种D-吡喃葡糖化合物可作为此类反应的受体。将β-D-葡糖基氟化物和甲基-α-D-吡喃葡萄糖苷[14C]的混合物与任一种酶一起孵育,都会产生甲基-α-D-吡喃葡萄糖基-(1→4)-α-D-[14C]吡喃葡萄糖苷和甲基-α-D-吡喃葡萄糖基-(1→6)-α-D-[14C]吡喃葡萄糖苷。葡糖淀粉酶产生的α-麦芽糖苷更多;葡糖右旋糖酐酶产生的α-异麦芽糖苷更多。因此,这两种“外切-α-葡聚糖水解酶”都表现为葡糖基酶,它们与构型相反的葡糖基供体催化立体特异性互补的水解和转葡糖基反应。这些反应不仅为这些通常被认为是严格水解酶的催化能力提供了新的视角;它们还为定义详细的催化机制提供了基础。目前的结果,连同本实验室最近的几项研究结果(特别是用β-淀粉酶作用于α-和β-麦芽基氟化物获得的类似发现(赫雷,E.J.,布鲁尔,C.F.,和根霍夫,D.S.(1979年)《生物化学杂志》254,5942 - 5950),为碳水化合物酶催化基团的功能灵活性提供了有力的新证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验