Kakiuchi Y, Nakajima S, Arai T, Horimoto M, Kikuchi Y, Koyama T
Jpn J Physiol. 1981;31(1):67-82. doi: 10.2170/jjphysiol.31.67.
To assess overall bodily transvascular fluid flow due to osmotic imbalance between blood and interstitial fluid during or after addition of hypertonic saline, sugar-, albumin- and dextran solutions or CO2 mixture to blood, arterial blood colloid osmotic pressure (COP) of anesthetized dogs was continuously measured with a needle-type colloid osmometer. Plasma volume change (delta Vp) was estimated from the changes in either the equivalent albumin concentration (C) or the albumin concentration equivalent to plasma COP, which was well confirmed in inanimate model experiments. Carbon dioxide inhalation caused RBC swelling (1.5% volume increase/10 mmHg of PCO2). Intravenous injection of hypertonic solutions resulted in transient osmotic flow (8.5 +/- 2.2 ml/g of solute per kg of animal weight by NaCl, and 1.7 +/- 0.4 by glucose), and albumin and dextran also induced fluid flow (1.3 +/- 0.4 by albumin and 2.2 +/- 0.7 by dextran), which depended on van't Hoff's law and reflection coefficient of solutes.
为评估在向血液中添加高渗盐水、糖溶液、白蛋白溶液、右旋糖酐溶液或二氧化碳混合物期间或之后,由于血液与组织间液之间的渗透失衡导致的全身跨血管液体流动情况,使用针型胶体渗透压计连续测量麻醉犬的动脉血胶体渗透压(COP)。血浆体积变化(ΔVp)根据等效白蛋白浓度(C)或与血浆COP等效的白蛋白浓度的变化来估算,这在无生命模型实验中得到了充分证实。吸入二氧化碳导致红细胞肿胀(每10 mmHg PCO₂体积增加1.5%)。静脉注射高渗溶液会导致短暂的渗透流动(氯化钠引起的渗透流动为每千克动物体重每克溶质8.5±2.2 ml,葡萄糖为1.7±0.4 ml),白蛋白和右旋糖酐也会诱导液体流动(白蛋白为1.3±0.4 ml,右旋糖酐为2.2±0.7 ml),这取决于范特霍夫定律和溶质的反射系数。