Suppr超能文献

生物膜中光电过程的快速阶段。III. 细菌光合氧化还原系统。

Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.

作者信息

Drachev L A, Skulachev V P, Smirnova I A, Chamorovsky S K, Kononenko A A, Rubin A B

出版信息

Eur J Biochem. 1981 Jul;117(3):483-9. doi: 10.1111/j.1432-1033.1981.tb06363.x.

Abstract

Chromatophores of photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas sphaeroides and Chromatium minutissimum were associated with a collodion film impregnated with a decane solution of asolectin. A very short light flash inducing a single turnover of the chromatophore photosynthetic redox system was found to induce the formation of an electrical potential difference amounting to 60 mV, directed across the film as measured with an orthodox electrometer technique. The main phase of the photoelectric response had a tau value of less than 200 ns. Addition of menadione and some other redox mediators increases the main phase amplitude and induces a slower phase (tau = 200 microseconds). In Ch. minutissimum chromatophores that retained their endogenous cytochrome c pool, one more electrogenic phase was revealed (tau = 20 microseconds). Redox titrations of the electric response and bacteriochlorophyll absorption at 430 nm as well as measurements of the kinetics of cytochrome c oxidation have indicated that the fastest electrogenic phase is due to electron transfer from bacteriochlorophyll to Fe-ubiquinone, the 20-microseconds phase to cytochrome c2+ - bacteriochlorophyll+ oxidoreduction, and the 200-microseconds phase to Fe-ubiquinone- oxidation by a secondary quinone. In the decay of the photoelectric response, a 30-ms phase was identified which was explained by a reverse electron transfer from reduced Fe-ubiquinone to oxidated bacteriochlorophyll. The difference in the fast kinetics of photoelectric generation by the bacteriochlorophyll system from those by bacterial and animal rhodopsins has been discussed.

摘要

光合细菌红螺菌、球形红假单胞菌和极小色杆菌的载色体与浸有大豆卵磷脂癸烷溶液的火棉胶膜相结合。发现极短的光脉冲诱导载色体光合氧化还原系统的单次周转,能诱导产生高达60毫伏的电势差,用传统的静电计技术测量,该电势差是跨膜的。光电响应的主要相位的时间常数小于200纳秒。加入甲萘醌和其他一些氧化还原介质会增加主要相位的幅度,并诱导出一个较慢的相位(时间常数 = 200微秒)。在保留其内源细胞色素c库的极小色杆菌载色体中,还揭示了另一个电生相位(时间常数 = 20微秒)。对电响应和430纳米处细菌叶绿素吸收的氧化还原滴定以及细胞色素c氧化动力学的测量表明,最快的电生相位是由于电子从细菌叶绿素转移到铁泛醌,20微秒的相位是由于细胞色素c2 + - 细菌叶绿素 + 的氧化还原,200微秒的相位是由于铁泛醌被次级醌氧化。在光电响应的衰减过程中,确定了一个30毫秒的相位,这可以用还原的铁泛醌向氧化的细菌叶绿素的反向电子转移来解释。已经讨论了细菌叶绿素系统产生光电的快速动力学与细菌视紫红质和动物视紫红质产生光电的快速动力学之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验