Traber R, Kramer H E, Hemmerich P
Biochemistry. 1982 Mar 30;21(7):1687-93. doi: 10.1021/bi00536a033.
The mechanism of flavin photoreduction by the amino acids, EDTA, and nitrilotriacetate is shown to be due to light-induced charge separation, which is irreversible in the dark. The irreversibility originates from the decarboxylation of the amino acid radical. This fast process changes the redox properties of the radical and makes a further donation of an electron equivalent possible. In the case of EDTA the electron acceptor of the second electron is flavin, which was left unexcited by the flash or is formed by dismutation from the flavosemiquinone, generated in the primary one-electron transfer process. In contrast to this, a mechanism for the flavin photoreduction by nitrilotriacetate is proposed, in which the decarboxylated nitrilotriacetate radical adds to the flavosemiquinone to yield an alkylated flavohydroquinone. The latter decays to free reduced or oxidized flavin, depending on the position of addition at the flavin chromophore. The difference in reaction mechanism between the nitrite anion, EDTA, and nitrilotriacetate is discussed in terms of differences in molecular structure.
氨基酸、乙二胺四乙酸(EDTA)和次氮基三乙酸使黄素光还原的机制表明是由于光诱导的电荷分离,这种电荷分离在黑暗中是不可逆的。这种不可逆性源于氨基酸自由基的脱羧反应。这个快速过程改变了自由基的氧化还原性质,并使得进一步提供一个电子当量成为可能。在EDTA的情况下,第二个电子的受体是黄素,它在闪光时未被激发,或者是由在初级单电子转移过程中产生的黄素半醌歧化形成的。与此相反,提出了次氮基三乙酸使黄素光还原的一种机制,其中脱羧的次氮基三乙酸自由基加成到黄素半醌上,生成烷基化的黄素对苯二酚。根据在黄素发色团上的加成位置,后者分解为游离的还原型或氧化型黄素。从分子结构的差异方面讨论了亚硝酸根阴离子、EDTA和次氮基三乙酸之间反应机制的差异。