Sharp R E, Moser C C, Rabanal F, Dutton P L
Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pa 19104, USA.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10465-70. doi: 10.1073/pnas.95.18.10465.
We report the construction of a synthetic flavo-heme protein that incorporates two major physiological activities of flavoproteins: light activation of flavin analogous to DNA photolyase and rapid intramolecular electron transfer between the flavin and heme cofactors as in several oxidoreductases. The functional tetra-alpha-helix protein comprises two 62-aa helix-loop-helix subunits. Each subunit contains a single cysteine to which flavin (7-acetyl-10-methylisoalloxazine) is covalently attached and two histidines appropriately positioned for bis-his coordination of heme cofactors. Both flavins and hemes are situated within the hydrophobic core of the protein. Intramolecular electron transfer from flavosemiquinone generated by photoreduction from a sacrificial electron donor in solution was examined between protoporphyrin IX and 1-methyl-2-oxomesoheme XIII. Laser pulse-activated electron transfer from flavin to meso heme occurs on a 100-ns time scale, with a favorable free energy of approximately -100 meV. Electron transfer from flavin to the lower potential protoporphyrin IX, with an unfavorable free energy, can be induced after a lag phase under continuous light illumination. Thus, the supporting peptide matrix provides an excellent framework for the positioning of closely juxtaposed redox groups capable of facilitating intramolecular electron transfer and begins to clarify in a simplified and malleable system the natural engineering of flavoproteins.
我们报道了一种合成黄素 - 血红素蛋白的构建,该蛋白融合了黄素蛋白的两种主要生理活性:类似于DNA光解酶的黄素光激活,以及如几种氧化还原酶中黄素与血红素辅因子之间快速的分子内电子转移。功能性四α - 螺旋蛋白由两个62个氨基酸的螺旋 - 环 - 螺旋亚基组成。每个亚基包含一个与黄素(7 - 乙酰基 - 10 - 甲基异咯嗪)共价连接的半胱氨酸,以及两个位置合适的组氨酸,用于与血红素辅因子进行双组氨酸配位。黄素和血红素均位于蛋白质的疏水核心内。研究了在溶液中由牺牲电子供体光还原产生的黄素半醌在原卟啉IX和1 - 甲基 - 2 - 氧代中血红素XIII之间的分子内电子转移。激光脉冲激活的从黄素到中血红素的电子转移发生在100纳秒的时间尺度上,自由能约为 - 100毫电子伏特,较为有利。在连续光照下经过延迟期后,可以诱导电子从黄素转移到具有不利自由能的较低电位的原卟啉IX。因此,支撑肽基质为紧密相邻的氧化还原基团的定位提供了一个出色的框架,能够促进分子内电子转移,并开始在一个简化且可塑的系统中阐明黄素蛋白的自然工程。