Suppr超能文献

心脏浦肯野纤维中细胞内钙驱动的膜电流波动。

Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers.

作者信息

Kass R S, Tsien R W

出版信息

Biophys J. 1982 Jun;38(3):259-69. doi: 10.1016/S0006-3495(82)84557-8.

Abstract

Spontaneous oscillatory fluctuations in membrane potential are often observed in heart cells, but their basis remains controversial. Such activity is enhanced in cardiac Purkinje fibers by exposure to digitalis or K-free solutions. Under these conditions, we find that voltage noise is generated by current fluctuations that persist when membrane potential is voltage clamped. Power spectra of current signals are not made up of single time-constant components, as expected from gating of independent channels, but are dominated by resonant characteristics between 0.5 and 2 HZ. Our evidence suggests that the periodicity arises from oscillatory variations in intracellular free Ca that control ion movements across the surface membrane. The current fluctuations are strongly cross-correlated with oscillatory fluctuations in contractile force, and are inhibited by removing extracellular Ca or exposure to D600. Chelating intracellular Ca with injected EGTA also abolishes the current fluctuations. The oscillatory mechanism may involve cycles of Ca (or Sr) movement between sarcoplasmic reticulum and myoplasm, as previously suggested for skinned cardiac preparations. Our experiments in intact cells indicate that changes in surface membrane potential can modulate cytoplasmic Ca oscillations in frequency and perhaps amplitude as well. A two-way interaction between surface membrane potential and intracellular Ca stores may be a common feature of heart, neuron, and other cell types.

摘要

在心脏细胞中经常观察到膜电位的自发振荡波动,但其产生机制仍存在争议。通过暴露于洋地黄或无钾溶液中,心脏浦肯野纤维中的这种活动会增强。在这些条件下,我们发现电压噪声是由膜电位钳制时持续存在的电流波动产生的。电流信号的功率谱并非由独立通道门控所预期的单一时间常数成分组成,而是在0.5至2赫兹之间以共振特性为主导。我们的证据表明,这种周期性源于细胞内游离钙的振荡变化,后者控制着跨表面膜的离子运动。电流波动与收缩力的振荡波动强烈相互关联,并通过去除细胞外钙或暴露于D600而受到抑制。用注射的EGTA螯合细胞内钙也会消除电流波动。振荡机制可能涉及肌浆网和肌质之间钙(或锶)的循环运动,正如之前对去皮心脏标本所提出的那样。我们在完整细胞中的实验表明,表面膜电位的变化可以调节细胞质钙振荡的频率,也许还能调节其幅度。表面膜电位和细胞内钙储存之间的双向相互作用可能是心脏、神经元和其他细胞类型的共同特征。

相似文献

1
Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers.
Biophys J. 1982 Jun;38(3):259-69. doi: 10.1016/S0006-3495(82)84557-8.
3
Calcium-activated transient outward current in calf cardiac Purkinje fibres.
J Physiol. 1980 Feb;299:485-506. doi: 10.1113/jphysiol.1980.sp013138.
4
Cellular and subcellular mechanisms of cardiac pacemaker oscillations.
J Exp Biol. 1979 Aug;81:205-15. doi: 10.1242/jeb.81.1.205.
5
Regulation of twitch tension in sheep cardiac Purkinje fibers during calcium overload.
Am J Physiol. 1987 Dec;253(6 Pt 2):H1540-7. doi: 10.1152/ajpheart.1987.253.6.H1540.
8
Cellular and subcellular mechanism of transient depolarization.
Jpn Circ J. 1987 Feb;51(2):172-5. doi: 10.1253/jcj.51.172.
9
Delayed rectification in the cardiac Purkinje fiber is not activated by intracellular calcium.
Biophys J. 1984 Apr;45(4):837-9. doi: 10.1016/S0006-3495(84)84227-7.

引用本文的文献

1
Inherited Arrhythmias in the Pediatric Population: An Updated Overview.
Medicina (Kaunas). 2024 Jan 3;60(1):94. doi: 10.3390/medicina60010094.
3
Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220170. doi: 10.1098/rstb.2022.0170. Epub 2023 May 1.
5
A novel substrate for arrhythmias in Chagas disease.
PLoS Negl Trop Dis. 2021 Jun 2;15(6):e0009421. doi: 10.1371/journal.pntd.0009421. eCollection 2021 Jun.
6
Mechano-Electric Coupling and Arrhythmogenic Current Generation in a Computational Model of Coupled Myocytes.
Front Physiol. 2020 Dec 10;11:519951. doi: 10.3389/fphys.2020.519951. eCollection 2020.
7
JNK2, a Newly-Identified SERCA2 Enhancer, Augments an Arrhythmic [Ca] Leak-Load Relationship.
Circ Res. 2021 Feb 19;128(4):455-470. doi: 10.1161/CIRCRESAHA.120.318409. Epub 2020 Dec 18.
8
Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System.
Front Endocrinol (Lausanne). 2020 Sep 29;11:568203. doi: 10.3389/fendo.2020.568203. eCollection 2020.
9
Afterdepolarizations and abnormal calcium handling in atrial myocytes with modulated SERCA uptake: a sensitivity analysis of calcium handling channels.
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190557. doi: 10.1098/rsta.2019.0557. Epub 2020 May 25.
10
Arrhythmogenic Current Generation by Myofilament-Triggered Ca Release and Sarcomere Heterogeneity.
Biophys J. 2019 Dec 17;117(12):2471-2485. doi: 10.1016/j.bpj.2019.11.009. Epub 2019 Nov 20.

本文引用的文献

1
Subsurface cisterns and their relationship to the neuronal plasma membrane.
J Cell Biol. 1962 Jun;13(3):405-21. doi: 10.1083/jcb.13.3.405.
3
An oscillatory current in sheep cardiac Purkinje fibers.
Circ Res. 1981 May;48(5):618-31. doi: 10.1161/01.res.48.5.618.
4
Calcium-activated transient outward current in calf cardiac Purkinje fibres.
J Physiol. 1980 Feb;299:485-506. doi: 10.1113/jphysiol.1980.sp013138.
5
Inward current channels activated by intracellular Ca in cultured cardiac cells.
Nature. 1981 Dec 24;294(5843):752-4. doi: 10.1038/294752a0.
6
Analysis of cardiac pacemaker potential using a "voltage clamp" technique.
Am J Physiol. 1966 Jun;210(6):1335-41. doi: 10.1152/ajplegacy.1966.210.6.1335.
7
The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres.
J Physiol. 1969 Jan;200(1):255-65. doi: 10.1113/jphysiol.1969.sp008691.
8
Nerve membrane current noise: direct measurements under voltage clamp.
Proc Natl Acad Sci U S A. 1969 Sep;64(1):95-9. doi: 10.1073/pnas.64.1.95.
9
Requirements for spontaneous contractility in isolated adult mammalian heart muscle cells.
Exp Cell Res. 1971 Nov;69(1):17-24. doi: 10.1016/0014-4827(71)90304-1.
10
The statistical nature of the acetycholine potential and its molecular components.
J Physiol. 1972 Aug;224(3):665-99. doi: 10.1113/jphysiol.1972.sp009918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验