Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H
J Biol Chem. 1982 Nov 10;257(21):12872-7.
Treatment of Ehrlich ascites tumor cells with the trifunctional alkylating agent 2,3-5-tris(ethyleneimino)benzoquinone-1,4 (triaziquonum) led to rapid fragmentation of DNA and depletion of NAD while poly(ADP-ribose) synthetase activity showed a retarded increase. Poly(ADP-ribosyl) residues in treated cells increased 4- to 30-fold, but transiently, and in a dose-dependent manner, exhibiting the same initial kinetics as the loss of NAD and the appearance of DNA strand breaks when determined by the nucleoid method. Although the amounts of "activated ADP-ribosyl" groups present in the substrate NAD (80 nmol/10(8) cells) exceeded by far basal and triaziquonum-induced poly(ADP-ribosyl) groups (up to 250 pmol/10(8) cells), accelerated formation of the polymer, nevertheless, may explain at least partially the loss of NAD seen under these conditions. Addition of benzamide, a potent inhibitor of poly(ADP-ribose) synthetase, to triaziquonum-treated cells effected an immediate drop of poly(ADP-ribose) to basal values. The data indicate a biphasic decay, the half-life of greater than 85% of the polymeric ADP-ribosyl groups exhibiting a t1/2 less than 1 min under these conditions, while the residual fraction died away with t1/2 approximately 6 min. Treatment with the DNA fragmenting agent also led to a 9-fold increase of nuclear mono(ADP-ribosyl) groups, while cytoplasmic mono(ADP-ribosyl) protein conjugates were not significantly affected. The apparent half-life of nuclear mono (ADP-ribosyl) protein conjugates (8-10 min) at peak elevation was definitely longer than that of poly(ADP-ribosyl) residues. This result is consistent with the interpretation that accumulation of mono(ADP-ribosyl) groups is due to a retarded removal of the primary ADP-ribosyl group from the acceptor protein by a separate mono(ADP-ribosyl) protein glycohydrolase, being the rate-limiting step in the overall turnover of poly(ADP-ribosyl) residues.
用三功能烷基化剂2,3,5 - 三(乙烯亚胺基)苯醌 - 1,4(三嗪醌)处理艾氏腹水瘤细胞,导致DNA迅速断裂和NAD耗竭,而聚(ADP - 核糖)合成酶活性显示出延迟增加。处理后的细胞中聚(ADP - 核糖基)残基增加了4至30倍,但只是短暂增加,且呈剂量依赖性,当用核仁法测定时,其初始动力学与NAD的损失和DNA链断裂的出现相同。尽管底物NAD中存在的“活化ADP - 核糖基”基团的量(80 nmol / 10⁸个细胞)远远超过基础和三嗪醌诱导的聚(ADP - 核糖基)基团的量(高达250 pmol / 10⁸个细胞),但聚合物的加速形成至少可以部分解释在这些条件下观察到的NAD损失。向经三嗪醌处理的细胞中添加聚(ADP - 核糖)合成酶的有效抑制剂苯甲酰胺,会使聚(ADP - 核糖)立即降至基础值。数据表明存在双相衰变,在这些条件下,超过85%的聚合ADP - 核糖基基团的半衰期小于1分钟,而剩余部分以约6分钟的半衰期消失。用DNA断裂剂处理还导致核单(ADP - 核糖基)基团增加了9倍,而细胞质单(ADP - 核糖基)蛋白缀合物未受到显著影响。核单(ADP - 核糖基)蛋白缀合物在峰值升高时的表观半衰期(8 - 10分钟)肯定比聚(ADP - 核糖基)残基的半衰期长。这一结果与以下解释一致,即单(ADP - 核糖基)基团的积累是由于一种单独的单(ADP - 核糖基)蛋白糖水解酶从受体蛋白上延迟去除初级ADP - 核糖基基团,这是聚(ADP - 核糖基)残基整体周转中的限速步骤。