Kovác L, Poliachová V, Horváth I
Biochim Biophys Acta. 1982 Dec 30;721(4):349-56. doi: 10.1016/0167-4889(82)90089-1.
The non-macrolid polyene antibiotic oleficin, which has been shown to function as an ionophore of Mg2+ in isolated rat liver mitochondria, preferentially inhibited growth of the yeast Saccharomyces cerevisiae on non-fermentable substrates. It uncoupled and inhibited respiration of intact cells and converted both growing and resting cells into respiration-deficient mutants. The mutants arose as a result of fragmentation of the mitochondrial genome. Another antibiotic known to be an ionophore of divalent cations, A23187, also selectively inhibited growth of the yeast on non-fermentable substrates, but did not produce the respiration-deficient mutants, neither antibiotic inhibited the energy-dependent uptake of divalent cations by yeast cells nor opened the plasma membrane for these cations. The results indicate that in Saccharomyces cerevisiae both oleficin and A23187 preferentially affected the mitochondrial membrane without acting as ionophores in the plasma membrane.