Suppr超能文献

带有计算机帧存储器的视频增强显微镜。

Video-enhanced microscopy with a computer frame memory.

作者信息

Allen R D, Allen N S

出版信息

J Microsc. 1983 Jan;129(Pt 1):3-17. doi: 10.1111/j.1365-2818.1983.tb04157.x.

Abstract

Video-enhanced microscopy combined with the use of a computer frame memory extends considerably the useful range of our video enhanced contrast (AVEC) methods for polarizing, double-beam interference and differential interference contrast microscopy. Increased visual contrast is achieved by two stages of amplifications: the first optical, by using high bias retardation settings, and the second electronic. These steps are followed by a reduction of background brightness by means of a clamp voltage applied to a DC restoration circuit of the video camera. One of the limitations of the AVEC method alone is the inevitable appearance under high gain conditions of a pattern of mottle due to inaccessible dirt and defects in the lenses even of high quality. This limitation has been circumvented by storing the mottle pattern in the frame memory (frame store) and continuously subtracting it from each succeeding frame to clear the image. A major gain in image quality has resulted. In polarizing microscopy, the frame memory can be used also to subtract the image at one compensator setting from that at the equivalent setting of opposite sign, thus removing from the final image not only most of the mottle pattern but also the contrast due to the bright-field contrast. In the polarizing microscope, these manipulations of the raw video image make it possible to observe and measure the birefringence of various organelles and elements such as microtubules, intermediate filaments and bundles of as few as a half dozen actin filaments. Since scattered light is also removed from the image, features hidden from view in the unprocessed image become visible. In differential interference microscopy, the AVEC method makes visible (i.e. detectable) many linear elements and particles that are an order of magnitude smaller than the resolution limit and not visible in the optical image. Such features are inflated by diffraction, however, to Airy disk size.

摘要

视频增强显微镜与计算机帧存储器相结合,极大地扩展了我们用于偏光、双光束干涉和微分干涉对比显微镜的视频增强对比度(AVEC)方法的有效范围。通过两个放大阶段实现视觉对比度的提高:第一阶段是光学放大,通过使用高偏置延迟设置;第二阶段是电子放大。这些步骤之后,通过向摄像机的直流恢复电路施加钳位电压来降低背景亮度。仅AVEC方法的一个局限性是,即使是高质量的透镜,在高增益条件下也不可避免地会出现由于透镜中难以触及的污垢和缺陷而产生的斑纹图案。通过将斑纹图案存储在帧存储器(帧存储)中,并从每个后续帧中连续减去该图案以清除图像,这个局限性得以克服。图像质量得到了显著提高。在偏光显微镜中,帧存储器还可用于从具有相反符号的等效设置下的图像中减去一个补偿器设置下的图像,从而不仅从最终图像中去除大部分斑纹图案,还去除由于明场对比度产生的对比度。在偏光显微镜中,对原始视频图像的这些操作使得观察和测量各种细胞器和元素(如微管、中间丝和少至半打肌动蛋白丝束)的双折射成为可能。由于散射光也从图像中去除,未处理图像中隐藏的特征变得可见。在微分干涉显微镜中,AVEC方法使许多比分辨率极限小一个数量级且在光学图像中不可见的线性元素和颗粒变得可见(即可检测)。然而,这些特征会因衍射而膨胀到艾里斑大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验