Porrello K, Cande W Z, Burnside B
J Cell Biol. 1983 Feb;96(2):449-54. doi: 10.1083/jcb.96.2.449.
The mechanism of contraction in motile models of teleost retinal cones has been examined by using N-ethylmaleimide (NEM)-modified myosin fragments (NEM-S-1 and NEM-heavy meromyosin [HMM]) to prevent access of native myosin to actin filaments during reactivation of contraction. In the diurnal light/dark cycle, retinal cones of green sunfish (Lepomis cyanellus) and bluegill (lepomis macrochirus) exhibit length changes of more than 90 mum. The motile myoid region of the cone contracts from 100 mum in the dark to 6 mum in the light. Motile models for cone contraction have been obtained by lysis of dark-adapted retinas with the non-ionic detergent, Brij-58. These cone motile models undergo Ca(++)-and ATP-dependent reactivated contraction, with morphology and rate comparable to those observed in vivo (Burnside, B.,B. Smith, M. Nagata, and K. Porrello, 1982, J. Cell Biol., 92:198-206). The cone myoids contain longitudinally oriented actin filaments which bind myosin subfragment-1 (S-1) to form characteristic "arrowhead" complexes which dissociate in the presence of MgATP (Burnside, B., 1978, J. Cell Biol., 78:227-246). Modification of S-1 or HMM with the sulfhydryl reagent, NEM, produces new species, NEM-S-1 or NEM-HMM, which still bind actin but which fail to detach in the presence of MgATP (Meeusen, R.L., and W.Z. Cande, 1979, J. Cell Biol., 82:57-65). We have used NEM-S-1 and NEM-HMM to test whether cone contraction depends on an actomyosin force- generating system. We find that reactivated contraction of cone models is inhibited by NEM-S-1 and NEM-HMM but not by the unmodified species, S-1 and HMM. Thus, reactivated cone contraction exhibits NEM-S-1 and NEM-HMM sensitivity as well as Ca(++)- and ATP- dependence. These observations are consistent with and actimyosin-mediated mechanism for force production during cone contraction.
通过使用N - 乙基马来酰亚胺(NEM)修饰的肌球蛋白片段(NEM - S - 1和NEM - 重酶解肌球蛋白 [HMM]),在收缩再激活过程中阻止天然肌球蛋白与肌动蛋白丝结合,从而研究了硬骨鱼视网膜视锥细胞运动模型中的收缩机制。在昼夜光/暗循环中,绿太阳鱼(蓝鳃太阳鱼)和蓝鳃翻车鱼的视网膜视锥细胞表现出超过90微米的长度变化。视锥细胞的运动肌样区域在黑暗中从100微米收缩至光照下的6微米。通过用非离子去污剂Brij - 58裂解暗适应的视网膜,获得了视锥细胞收缩的运动模型。这些视锥细胞运动模型经历Ca(++)和ATP依赖性的再激活收缩,其形态和速率与体内观察到的相当(伯恩赛德,B.,B. 史密斯,M. 永田,和K. 波雷洛,1982年,《细胞生物学杂志》,92:198 - 206)。视锥细胞的肌样区域含有纵向排列的肌动蛋白丝,这些肌动蛋白丝与肌球蛋白亚片段 - 1(S - 1)结合形成特征性的“箭头状”复合物,该复合物在MgATP存在下会解离(伯恩赛德,B.,1978年,《细胞生物学杂志》,78:227 - 246)。用巯基试剂NEM修饰S - 1或HMM会产生新的物种,即NEM - S - 1或NEM - HMM,它们仍然能结合肌动蛋白,但在MgATP存在下无法分离(梅森,R.L.,和W.Z. 坎德,1979年,《细胞生物学杂志》,82:57 - 65)。我们使用NEM - S - 1和NEM - HMM来测试视锥细胞收缩是否依赖于肌动球蛋白力产生系统。我们发现视锥细胞模型的再激活收缩受到NEM - S - 1和NEM - HMM的抑制,但未被未修饰的物种S - 1和HMM抑制。因此,再激活的视锥细胞收缩表现出对NEM - S - 1和NEM - HMM的敏感性以及对Ca(++)和ATP的依赖性。这些观察结果与视锥细胞收缩过程中由肌动球蛋白介导的力产生机制一致。