Suppr超能文献

静息状态的存在对培养物中细胞分裂概率的影响。

Influence of the existence of a resting state on the probability of cell division in culture.

作者信息

Hirsch H R

出版信息

J Theor Biol. 1983 Feb 7;100(3):399-410. doi: 10.1016/0022-5193(83)90437-x.

Abstract

A cell cycle model developed by Smith and Martin is generalized to allow for the possibility that the duration of the B phase is not fixed. The B phase is the equivalent of the traditional S, G2, and M phases of the cell cycle. The duration of the B phase is represented by a Gaussian probability distribution; the duration of the resting or A state which replaces the traditional G1 phase is represented by a decaying exponential distribution. A doubling time distribution, termed the CEG distribution, is obtained by convolution of the A state and B phase distributions. Like the reciprocal normal, rate normal, and log normal distributions, it is a rounded unimodal peak that is skewed to the right. None of the three former distributions is associated with a cell cycle model that includes a resting state. However the CEG distribution, which is so associated, bears little resemblance to the delayed exponential distribution which results when the duration of the B phase is fixed and the duration of the A state is random. Consequently, it would be difficult to use the doubling time distribution to determine whether or not a resting state exists in a particular cell population.

摘要

史密斯和马丁开发的细胞周期模型得到了推广,以考虑B期持续时间不固定的可能性。B期相当于细胞周期中传统的S期、G2期和M期。B期的持续时间由高斯概率分布表示;取代传统G1期的静止或A状态的持续时间由衰减指数分布表示。通过A状态和B期分布的卷积获得了一种称为CEG分布的倍增时间分布。与倒数正态分布、速率正态分布和对数正态分布一样,它是一个向右偏斜的圆形单峰峰值。前三种分布均与包含静止状态的细胞周期模型无关。然而,与之相关的CEG分布与B期持续时间固定且A状态持续时间随机时产生的延迟指数分布几乎没有相似之处。因此,很难使用倍增时间分布来确定特定细胞群体中是否存在静止状态。

相似文献

1
Influence of the existence of a resting state on the probability of cell division in culture.
J Theor Biol. 1983 Feb 7;100(3):399-410. doi: 10.1016/0022-5193(83)90437-x.
2
Influence of the existence of a resting state on the decay of synchronization in cell culture.
J Theor Biol. 1984 Nov 7;111(1):61-79. doi: 10.1016/s0022-5193(84)80196-4.
3
Converse Smith-Martin cell cycle kinetics by transformed B lymphocytes.
Cell Cycle. 2018;17(16):2041-2051. doi: 10.1080/15384101.2018.1511511. Epub 2018 Sep 11.
4
Predicted steady-state cell size distributions for various growth models.
J Theor Biol. 1987 Dec 7;129(3):325-35. doi: 10.1016/s0022-5193(87)80005-x.
5
Mathematical models for a G0 phase in Saccharomyces cerevisiae.
J Theor Biol. 1987 Apr 7;125(3):269-81. doi: 10.1016/s0022-5193(87)80059-0.
6
A G1 rate model accounts for cell-cycle kinetics attributed to 'transition probability'.
Nature. 1980 Oct 30;287(5785):857-9. doi: 10.1038/287857a0.
9
Cell cycle dynamics inferred from the static properties of cells in balanced growth.
J Gen Microbiol. 1982 Dec;128(12):2877-92. doi: 10.1099/00221287-128-12-2877.

引用本文的文献

1
Three-dimensional cell cycle model with distributed transcription and translation.
Med Biol Eng Comput. 2005 Jan;43(1):155-61. doi: 10.1007/BF02345138.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验