Lutfi R A
J Acoust Soc Am. 1983 Mar;73(3):899-905. doi: 10.1121/1.389014.
This study examines how simultaneous masking of a tone by bandlimited noise may be affected by nonlinear interactions among spectral components of the noise. Simultaneous masking patterns (signal threshold versus signal frequency) were obtained with three types of maskers: (A) a narrow-band noise, 50 Hz wide with variable center frequency fv, (B) pairs of narrow-band noises, each band 50 Hz wide with center frequencies fl and fu, and (C) wide-band noise formed by filling the spectral gap between the two bands of (B). The variable frequency fv was set to 1.0, 1.1, 1.2, and 1.3 kHz: fl was fixed at 1.0 kHz, and fu had values of 1.1, 1.2, and 1.3 kHz. In most conditions, the two-band maskers and the wideband maskers produced more masking than would be predicted from the masking produced by the single narrow-band maskers. For certain signal frequencies below the maskers, adding noise to fill the spectral gap of the two-band masker actually resulted in a 3- to 15-dB release from masking. These results reveal factors that may operate to confound modern measures of frequency selectivity.