Suppr超能文献

大鼠脑中2-氟-2-脱氧-D-葡萄糖的转运及磷酸化动力学

Kinetics of transport and phosphorylation of 2-fluoro-2-deoxy-D-glucose in rat brain.

作者信息

Crane P D, Pardridge W M, Braun L D, Oldendorf W H

出版信息

J Neurochem. 1983 Jan;40(1):160-7. doi: 10.1111/j.1471-4159.1983.tb12666.x.

Abstract

UNLABELLED

The kinetics of transport across the blood-brain barrier and metabolism in brain (hemisphere) of [14C]2-fluoro-2-deoxy-D-glucose (FDG) were compared to that of [3H]2-deoxy-D-glucose (DG) and D-glucose in the pentobarbital-anesthetized adult rat. Saturation kinetics of transport were measured with the brain uptake index (BUI) method. The BUI for FDG was 54.3 +/- 5.6. Nonlinear regression analysis gave a Km of 6.9 +/- 1.2 mM and a Vmax of 1.70 +/- 0.32 mumol/min/g. The Ki for glucose inhibition of FDG transport was 10.7+/-44 mM. The kinetic constants of influx (k1) and efflux (k2) for FDG were calculated from the Km2, Vmax, and glucose concentrations of the hemisphere and plasma (2.3 +/- 0.2 mumol/g and 9.9 +/- 0.4 mM, respectively). The transport coefficient (k1 FDG/k1 glucose)was 1.67 +/- 0.07 and the phosphorylation constant was 0.55 +/- 0.16. The predicted lumped constant for FDG was 0.89, whereas the measured hexose utilization index for FDG was 0.85 +/- 0.16.

CONCLUSION

The value for the lumped constant can be predicted on the basis of the known kinetic constants of FDG and glucose transport and metabolism, as well as brain and plasma glucose levels. Knowledge of the lumped constant is crucial in interpreting data obtained from 18FDG analysis of regional glucose utilization in human brain in pathological states. We propose that the lumped constant will rise to a maximum equal to the transport coefficient for FDG under conditions of transport limitation (hypoglycemia) or elevated glycolysis (ischemia, seizures), and will fall to a minimum equal to the phosphorylation coefficient during phosphorylation limitation (extreme hyperglycemia).

摘要

未标记

将[14C]2-氟-2-脱氧-D-葡萄糖(FDG)穿过血脑屏障的转运动力学及其在脑(半球)中的代谢与[3H]2-脱氧-D-葡萄糖(DG)和D-葡萄糖在戊巴比妥麻醉的成年大鼠中的情况进行了比较。采用脑摄取指数(BUI)法测量转运的饱和动力学。FDG的BUI为54.3±5.6。非线性回归分析得出Km为6.9±1.2 mM,Vmax为1.70±0.32 μmol/min/g。葡萄糖对FDG转运抑制的Ki为10.7±44 mM。根据半球和血浆的Km2、Vmax以及葡萄糖浓度(分别为2.3±0.2 μmol/g和9.9±0.4 mM)计算出FDG的流入(k1)和流出(k2)动力学常数。转运系数(k1 FDG/k1葡萄糖)为1.67±0.07,磷酸化常数为0.55±0.16。预测的FDG集总常数为0.89,而测得的FDG己糖利用指数为0.85±0.16。

结论

集总常数的值可根据FDG和葡萄糖转运及代谢的已知动力学常数以及脑和血浆葡萄糖水平进行预测。了解集总常数对于解释在病理状态下从人脑区域葡萄糖利用的18FDG分析中获得的数据至关重要。我们提出,在转运受限(低血糖)或糖酵解升高(缺血、癫痫发作)的情况下,集总常数将升至最大值,等于FDG的转运系数;而在磷酸化受限(极度高血糖)期间,集总常数将降至最小值,等于磷酸化系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验