Suppr超能文献

Errors in measuring trabecular bone by computed tomography due to marrow and bone composition.

作者信息

Mazess R B

出版信息

Calcif Tissue Int. 1983;35(2):148-52. doi: 10.1007/BF02405022.

Abstract

The linear attenuation coefficient (mu in cm-1) of trabecular bone was modeled for different conditions of bone and marrow composition in order to assess their influence on computed tomography (CT) quantitation. A large relative change (10% of TBV at 15% TBV) of bone concentration resulted in small changes of mu: 2.3% at 60 keV, 3.4% at 44 keV, 5.2% at 29 keV. Relative changes of trabecular bone volume (TBV) on the order of 3% could be detected in vivo by CT were it not for errors of relocation and for compositional influences on accuracy. The mu (and density) depended critically not only on amounts of bone substance and marrow but on their compositions. Normal variation in the composition of bone substance produced an uncertainty in mu equivalent to 0.5 to 1% TBV. Increases of yellow marrow produced a decrease of mu which could be mistaken for a decrease of bone concentration. The biological variation (90% confidence limit) of marrow composition gives an uncertainty at 15% TBV of about 2.4% TBV at 60 keV, 1.7% at 44 keV, and 1.3% at 29 keV. These correspond to relative uncertainties of 16, 11, and 9% respectively. These factors help explain the large accuracy errors (30%) observed in all studies of trabecular bone where single-energy CT was used. Marrow composition also can affect precision of bone measurement. Systematic shifts of red and yellow marrow could mask biological changes such as those occurring with aging or treatment.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验