Suppr超能文献

细胞色素和黄素蛋白参与日本根瘤菌类菌体中的氢氧化作用。

Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids.

作者信息

O'Brian M R, Maier R J

出版信息

J Bacteriol. 1983 Aug;155(2):481-7. doi: 10.1128/jb.155.2.481-487.1983.

Abstract

Electron transport components involved in H2 oxidation were studied in membranes from Rhizobium japonicum bacteroids. Hydrogen oxidation in membranes was inhibited by antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide with Ki values of 39.4 and 5.6 microM, respectively. The inhibition of H2 uptake by cyanide was triphasic with Ki values of 0.8, 9.9, and 93.6 microM. This result suggested that three cyanide-reactive components were involved in H2 oxidation. H2-reduced minus O2-oxidized absorption difference spectra showed peaks at 551.5 and 560 nm, indicating the involvement of c- and b-type cytochromes, respectively. This spectrum also revealed a trough at 455 nm, showing that H2 oxidation involves a flavoprotein. This flavoprotein was not reduced by H2 in the presence of cyanide. The inhibition of H2 or cytochrome c oxidation by the flavoprotein inhibitor Atebrin was monophasic; the Ki values were similar for both substrates. A role for the flavoprotein as a terminal oxidase was implicated based on its high redox potential and its sensitivity to cyanide. Cytochromes o and c-552 were identified based on their ability to bind carbon monoxide and cyanide.

摘要

对日本根瘤菌类菌体膜中参与氢气氧化的电子传递成分进行了研究。膜中的氢气氧化受到抗霉素A和2-正庚基-4-羟基喹啉-N-氧化物的抑制,其抑制常数(Ki)值分别为39.4和5.6微摩尔。氰化物对氢气摄取的抑制呈三相,Ki值分别为0.8、9.9和93.6微摩尔。该结果表明,三种氰化物反应性成分参与了氢气氧化。氢气还原减去氧气氧化的吸收差光谱在551.5和560纳米处出现峰值,分别表明c型和b型细胞色素的参与。该光谱还在455纳米处显示出一个谷值,表明氢气氧化涉及一种黄素蛋白。在有氰化物存在的情况下,该黄素蛋白不会被氢气还原。黄素蛋白抑制剂阿的平对氢气或细胞色素c氧化的抑制是单相的;两种底物的Ki值相似。基于其高氧化还原电位和对氰化物的敏感性,推测黄素蛋白作为一种末端氧化酶发挥作用。根据细胞色素o和c-552与一氧化碳和氰化物结合的能力对它们进行了鉴定。

相似文献

1
Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids.
J Bacteriol. 1983 Aug;155(2):481-7. doi: 10.1128/jb.155.2.481-487.1983.
2
Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum.
J Bacteriol. 1982 Oct;152(1):422-30. doi: 10.1128/jb.152.1.422-430.1982.
3
Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii.
J Bacteriol. 1984 Jul;159(1):348-52. doi: 10.1128/jb.159.1.348-352.1984.
4
Expression of cytochrome o in hydrogen uptake constitutive mutants of Rhizobium japonicum.
J Bacteriol. 1985 Feb;161(2):507-14. doi: 10.1128/jb.161.2.507-514.1985.
5
Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
J Bacteriol. 1982 Mar;149(3):1005-12. doi: 10.1128/jb.149.3.1005-1012.1982.
6
Role of ubiquinone in hydrogen-dependent electron transport in Rhizobium japonicum.
J Bacteriol. 1985 Feb;161(2):775-7. doi: 10.1128/jb.161.2.775-777.1985.
7
Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans.
J Bacteriol. 1983 Dec;156(3):1178-87. doi: 10.1128/jb.156.3.1178-1187.1983.
9
The electron transport chain of Rhizobium trifolii.
Eur J Biochem. 1980 Oct;111(2):473-8. doi: 10.1111/j.1432-1033.1980.tb04962.x.
10
Terminal electron transport in Treponema pallidum.
Infect Immun. 1977 Jun;16(3):885-90. doi: 10.1128/iai.16.3.885-890.1977.

引用本文的文献

1
Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs.
Microbes Environ. 2012;27(3):306-15. doi: 10.1264/jsme2.me11321. Epub 2012 Mar 28.
2
Characterization of delta-Aminolevulinic Acid Formation in Soybean Root Nodules.
Plant Physiol. 1992 Mar;98(3):1074-9. doi: 10.1104/pp.98.3.1074.
3
Cytochrome mutants of bradyrhizobium induced by transposon tn5.
Plant Physiol. 1989 Jun;90(2):553-9. doi: 10.1104/pp.90.2.553.
4
Hemoproteins of Bradyrhizobium japonicum Cultured Cells and Bacteroids.
Appl Environ Microbiol. 1990 Sep;56(9):2736-41. doi: 10.1128/aem.56.9.2736-2741.1990.
5
Symbiotic deficiencies associated with a coxWXYZ mutant of bradyrhizobium japonicum.
Appl Environ Microbiol. 1999 Jan;65(1):339-41. doi: 10.1128/AEM.65.1.339-341.1999.
6
Oxygen-dependent transcriptional regulation of cytochrome aa3 in Bradyrhizobium japonicum.
J Bacteriol. 1993 Jan;175(1):128-32. doi: 10.1128/jb.175.1.128-132.1993.
7
Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii.
J Bacteriol. 1984 Jul;159(1):348-52. doi: 10.1128/jb.159.1.348-352.1984.
8
Some properties of the nickel-containing hydrogenase of chemolithotrophically grown Rhizobium japonicum.
J Bacteriol. 1984 Sep;159(3):850-6. doi: 10.1128/jb.159.3.850-856.1984.
9
Role of ubiquinone in hydrogen-dependent electron transport in Rhizobium japonicum.
J Bacteriol. 1985 Feb;161(2):775-7. doi: 10.1128/jb.161.2.775-777.1985.
10
Expression of cytochrome o in hydrogen uptake constitutive mutants of Rhizobium japonicum.
J Bacteriol. 1985 Feb;161(2):507-14. doi: 10.1128/jb.161.2.507-514.1985.

本文引用的文献

1
Hydrogenase in Rhizobium japonicum Increases Nitrogen Fixation by Nodulated Soybeans.
Science. 1979 Mar 23;203(4386):1255-7. doi: 10.1126/science.203.4386.1255.
2
Cytochromes of Rhizobium japonicum 61A76 Bacteroids from Soybean Nodules.
Plant Physiol. 1983 Jan;71(1):194-6. doi: 10.1104/pp.71.1.194.
3
Spectral evidence for a component involved in hydrogen metabolism of soybean nodule bacteroids.
Plant Physiol. 1982 Dec;70(6):1667-72. doi: 10.1104/pp.70.6.1667.
4
Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids.
Plant Physiol. 1980 Dec;66(6):1061-6. doi: 10.1104/pp.66.6.1061.
6
THE OXIDASE SYSTEM OF HETEROTROPHICALLY-GROWN RHODOSPIRILLUM RUBRUM.
Biochim Biophys Acta. 1965 Mar 22;96:395-428. doi: 10.1016/0005-2787(65)90560-5.
7
CYTOCHROME OXIDASE AND ITS DERIVATIVES. I. CARBON MONOXIDE AND CYANIDE COMPOUNDS.
Proc R Soc Lond B Biol Sci. 1964 Feb 18;159:405-28. doi: 10.1098/rspb.1964.0010.
9
Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum.
J Bacteriol. 1982 Oct;152(1):422-30. doi: 10.1128/jb.152.1.422-430.1982.
10
Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria.
Annu Rev Microbiol. 1981;35:405-52. doi: 10.1146/annurev.mi.35.100181.002201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验