Suppr超能文献

扇贝远端光感受器中早期感受器电位和晚期感受器电位的颜色依赖性

Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.

作者信息

Cornwall M C, Gorman A L

出版信息

J Physiol. 1983 Jul;340:307-34. doi: 10.1113/jphysiol.1983.sp014764.

Abstract
  1. Intracellular voltage and current responses to short (blue) and long (red) wave-length lights were measured in the distal hyperpolarizing photoreceptor (;off receptor') of the isolated and perfused scallop (Pecten irradians) retina.2. The early receptor potential (e.r.p.) was isolated by holding membrane potential at the reversal potential for the late receptor potential (l.r.p.) or by working at temperatures (< 5.0 degrees C) that abolished the l.r.p.3. The e.r.p., measured using intense flashes of white light, consisted of a positive phase followed by a negative phase, but was converted to a monophasic, negative-going wave following pre-adaptation with red light and to a monophasic, positive-going wave following pre-adaptation with blue light.4. The spectral sensitivity curve for the negative e.r.p. was maximum at 500 nm, whereas the spectral sensitivity curve for the positive e.r.p. was maximum at 575 nm.5. The positive or negative e.r.p.s approached their maximum amplitude exponentially when tested with red or blue flashes of increasing intensity. The results suggest that the positive (or negative) e.r.p. is proportional to the number of photopigment molecules photo-isomerized.6. The photosensitivity maximum of rhodopsin calculated at 500 nm, using the exponential constant and the spectral sensitivity data, was estimated to be 2.1 x 10(-16) cm(2) photon(-1), whereas the photosensitivity maximum of metarhodopsin calculated at 575 nm was estimated to be 2.6 x 10(-16) cm(2) photon(-1).7. In cells pre-adapted with white light, stimulation with blue light caused a hyperpolarizing l.r.p. which was followed by a prolonged hyperpolarizing after-potential (p.h.a.). Stimulation with red light under similar conditions caused an initial hyperpolarization which was followed by a small depolarization during the stimulus, but no after-potential.8. The duration of the p.h.a. was increased by pre-adaptation with a red light, which caused the maximum net transfer of metarhodopsin to rhodopsin; however, its decay was always complete in 5 min or less.9. The photo-isomerization of metarhodopsin by red light suppressed the p.h.a. and caused an after-depolarizing response that decayed in less than 1 min.10. The spectral sensitivity curve for the induction of the p.h.a. was maximum at 500 nm and corresponded to the spectral sensitivity for the negative e.r.p. and for the l.r.p. studied in the dark-adapted retina, whereas the spectral sensitivity curve for the suppression of the p.h.a. and for the induction of the after-depolarization was maximum at 575 nm and corresponded to the spectral sensitivity for the positive e.r.p.11. In photoreceptors clamped to the resting potential in normal ASW, the photo-isomerization of rhodopsin, in the absence of light absorption by metarhodopsin, activated a persistent outward current that had the same time course of decay as the p.h.a. The photo-isomerization of metarhodopsin suppressed the persistent outward current and activated an inward current whose decay took longer than the decay of the after-depolarizing response.12. In the absence of external Ca(2+) and Na(+) ions, the persistent outward current produced by light absorption by rhodopsin, and the inward current produced by light absorption by metarhodopsin, both reversed at the K(+) equilibrium potential. The results show that the induction of the prolonged hyperpolarizing after-potential and the after-depolarizing response involve only the movement of K(+) ions through the same light-dependent K(+) channels that determine the hyperpolarizing l.r.p. of the distal cells.
摘要
  1. 在分离并灌注的扇贝(辐肛栉孔扇贝)视网膜的远端超极化光感受器(“关闭型感受器”)中,测量了细胞内对短波(蓝光)和长波(红光)光的电压和电流响应。

  2. 通过将膜电位保持在晚期感受器电位(l.r.p.)的反转电位,或在消除l.r.p.的温度(<5.0摄氏度)下工作,分离出早期感受器电位(e.r.p.)。

  3. 使用强光白光闪光测量的e.r.p.由一个正相接着一个负相组成,但在红光预适应后转变为单相位、负向波,在蓝光预适应后转变为单相位、正向波。

  4. 负e.r.p.的光谱灵敏度曲线在500nm处最大,而正e.r.p.的光谱灵敏度曲线在575nm处最大。

  5. 当用强度增加的红光或蓝光闪光测试时,正或负e.r.p.呈指数方式接近其最大振幅。结果表明,正(或负)e.r.p.与光异构化的视色素分子数量成正比。

  6. 使用指数常数和光谱灵敏度数据计算得出,视紫红质在500nm处的最大光敏度估计为2.1×10⁻¹⁶cm²光子⁻¹,而变视紫红质在575nm处计算得出的最大光敏度估计为2.6×10⁻¹⁶cm²光子⁻¹。

  7. 在白光预适应的细胞中,蓝光刺激引起超极化的l.r.p.,随后是延长的超极化后电位(p.h.a.)。在类似条件下红光刺激引起初始超极化,随后在刺激期间有一个小的去极化,但没有后电位。

  8. 红光预适应增加了p.h.a.的持续时间,这导致变视紫红质向视紫红质的最大净转化;然而,其衰减在5分钟或更短时间内总是完全的。

  9. 红光使变视紫红质光异构化抑制了p.h.a.,并引起一个去极化后反应,该反应在不到1分钟内衰减。

  10. 诱导p.h.a.的光谱灵敏度曲线在500nm处最大,与在暗适应视网膜中研究的负e.r.p.和l.r.p.的光谱灵敏度相对应,而抑制p.h.a.和诱导去极化后反应的光谱灵敏度曲线在575nm处最大,与正e.r.p.的光谱灵敏度相对应。

  11. 在正常人工海水(ASW)中钳制到静息电位的光感受器中,在没有变视紫红质光吸收的情况下,视紫红质的光异构化激活了一个持续的外向电流,其衰减时间过程与p.h.a.相同。变视紫红质的光异构化抑制了持续的外向电流,并激活了一个内向电流,其衰减比去极化后反应的衰减持续时间更长。

  12. 在没有外部Ca²⁺和Na⁺离子的情况下,视紫红质光吸收产生的持续外向电流和变视紫红质光吸收产生的内向电流都在K⁺平衡电位处反转。结果表明,延长的超极化后电位和去极化后反应的诱导仅涉及K⁺离子通过与决定远端细胞超极化l.r.p.相同的光依赖性K⁺通道的移动。

相似文献

本文引用的文献

2
3
The rhodopsin system of the squid.鱿鱼的视紫红质系统。
J Gen Physiol. 1958 Jan 20;41(3):501-28. doi: 10.1085/jgp.41.3.501.
10
The fine structure of the eye of the mollusc Pecten maximus.
Z Zellforsch Mikrosk Anat. 1967;76(3):25-312.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验