Suppr超能文献

模拟随机化检验。

The simulated randomization test.

作者信息

Recchia M, Rocchetti M

出版信息

Comput Programs Biomed. 1982 Oct;15(2):111-6. doi: 10.1016/0010-468x(82)90062-9.

Abstract

Non-parametric statistical methods have been the subject of renewed interest. They are particularly useful in the behavioral sciences as they can be applied to a large class of distributions, and because the investigator is not forced into making any erroneous assumptions about a Gaussian distribution for the parent population or about equal variances in the contrasted groups. The randomization test is the most powerful non-parametric test [1] but it is rarely used because it calls for a prohibitive amount of computation. However, two tools now available make it more feasible: simulation and high-speed computer calculations. This test's importance lies in the extremely simple logic by which it is set up. The program described here is written in BASIC language for a microcomputer and carries out an approximate randomization test using a simulated distribution instead of the entire distribution. This version is slightly less powerful, a small price to pay for reducing the enormous calculation capacity otherwise required.

摘要

非参数统计方法再度引起了人们的关注。它们在行为科学中特别有用,因为它们可以应用于一大类分布,而且研究者不必对总体分布做出关于高斯分布的任何错误假设,也不必对对比组的方差齐性做出假设。随机化检验是最强大的非参数检验[1],但很少使用,因为它需要大量的计算。然而,现在可用的两种工具使其更可行:模拟和高速计算机计算。该检验的重要性在于其建立的逻辑极其简单。这里描述的程序是用BASIC语言为微型计算机编写的,它使用模拟分布而不是整个分布来进行近似随机化检验。这个版本的检验效力稍低一些,但这是为减少原本所需的巨大计算量而付出的小代价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验