Sondhi M M
J Acoust Soc Am. 1978 May;63(5):1468-77. doi: 10.1121/1.381893.
We describe an effective technique for computing the steady-state motion in a two-dimensional cochlear model. With the cochlear fluid assumed incompressible and inviscid, the problem reduces to solving Laplace's equation for a region with a yielding boundary (corresponding to the basilar membrane). From an integral equation representation of this solution, a pair of second-order differential equations is derived. The solution of these differential equations gives the velocity of the basilar membrane and hence other related quantities, e.g., displacement, pressure, driving-point impedance at the stapes. Higher-order approximations, as well as extensions to nonlinear membranes are discussed.
我们描述了一种用于计算二维耳蜗模型中稳态运动的有效技术。假设耳蜗内的流体不可压缩且无粘性,该问题就简化为求解一个具有屈服边界(对应于基底膜)区域的拉普拉斯方程。从该解的积分方程表示出发,推导出了一对二阶微分方程。这些微分方程的解给出了基底膜的速度,进而得到其他相关量,例如位移、压力、镫骨处的驱动点阻抗。文中还讨论了高阶近似以及对非线性膜的扩展。