Suppr超能文献

乙酰胆碱受体控制离子跨细胞膜转运的分子机制。

Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes.

作者信息

Cash D J, Hess G P

出版信息

Proc Natl Acad Sci U S A. 1980 Feb;77(2):842-6. doi: 10.1073/pnas.77.2.842.

Abstract

Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of (86)Rb(+) and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1 degrees C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec(-1). Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec(-1) and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells.

摘要

两种分子过程,即乙酰胆碱与膜结合的乙酰胆碱受体蛋白的结合以及特定无机离子的受体控制通量率,对于确定神经和肌肉细胞的膜电位至关重要。所报道的测量结果确立了这两种过程之间的关系:乙酰胆碱受体控制的(86)Rb(+)跨膜离子通量与氨基甲酰胆碱(乙酰胆碱的一种稳定类似物)的浓度之间的关系。使用了200倍浓度范围的氨基甲酰胆碱。通量是在毫秒到分钟的时间范围内,通过淬灭流动技术进行测量的,该技术使用从电鳗(Electrophorus electricus)的电器官制备的膜囊泡,置于pH 7.0和1摄氏度的鳗鱼林格氏溶液中。该技术使得在一个可确定数量的受体暴露于已知浓度配体的系统中,研究具有可变已知内部和外部离子浓度的特定离子的跨膜运输成为可能。离子通量对配体的响应曲线呈S形,平均最大速率为84秒(-1)。氨基甲酰胆碱诱导受体失活,最大速率为2.7秒(-1),且具有不同的配体依赖性,因此在低配体浓度下相对于离子通量较快,但在高配体浓度下相对于离子通量较慢。符合数据的最简单模型由处于配体控制平衡的活性和非活性状态的受体组成。受体失活发生在一个或两个配体分子结合时。对于通道开放,需要两个配体分子结合到活性状态,协同性源于通道开放过程本身。显然,对于氨基甲酰胆碱,通道开放步骤的平衡位置只有四分之一开放。基于该模型的积分速率方程预测了在所研究的氨基甲酰胆碱浓度范围内受体控制的离子通量的时间依赖性。速率方程中常数的值构成了预测受体控制的细胞跨膜电位变化以及导致细胞间信号传递的条件的基础。

相似文献

引用本文的文献

3
Acetylcholine receptor: dynamic properties.乙酰胆碱受体:动态特性
Biophys J. 1984 Jan;45(1):8-10. doi: 10.1016/S0006-3495(84)84086-2.
5
Formation of the nicotinic acetylcholine receptor binding sites.烟碱型乙酰胆碱受体结合位点的形成。
J Neurosci. 1998 Aug 1;18(15):5555-64. doi: 10.1523/JNEUROSCI.18-15-05555.1998.

本文引用的文献

5
Kinetics of allosteric enzymes.别构酶的动力学
Annu Rev Biophys Bioeng. 1974;3(0):1-33. doi: 10.1146/annurev.bb.03.060174.000245.
6
Transport.运输
Annu Rev Biochem. 1970;39:561-98. doi: 10.1146/annurev.bi.39.070170.003021.
8
Allosteric interactions of the membrane-bound acetylcholine reception: kinetic studies with alpha-bungarotoxin.
Biochem Biophys Res Commun. 1975 Jan 2;64(3):1018-27. doi: 10.1016/0006-291x(75)90149-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验