Morton K A, Kushner J P, Burnham B F, Horton W J
Proc Natl Acad Sci U S A. 1981 Sep;78(9):5325-8. doi: 10.1073/pnas.78.9.5325.
The purpose of this study was to assess the ability of hepatocytes to synthesize porphyrins and heme from delta-aminolevulinic acid derived from gamma, delta-dioxovalerate and alanine. An alternate pathway for delta-aminolevulinic acid synthesis, in contrast to the condensation of succinate and glycine by delta-aminolevulinate synthase [succinyl-CoA:glycine C-succinyltransferase (decarboxylating), EC 2.3.1.37] has been suggested. This has been supported by the isolation of gamma, delta-dioxovalerate transaminase from liver mitochondria (Varticovski, L., Kushner, J. P. & Burnham, B. F. (1980) J. Biol. Chem. 255, 3742-3747). Gamma, delta-dioxovalerate transaminase catalyzes the formation of delta-aminolevulinic acid by a transamination reaction involving gamma, delta-dioxovalerate and alanine. To assess the significance of this alternate route, we prepared suspensions of respiring rat hepatocytes, which were incubated with optimal concentrations of various additives and then analyzed spectrophotometrically for synthesized porphyrins. No porphyrin synthesis was detected in cell suspensions incubated with succinate(1 mM) and glycine (20 mM). Cell suspensions incubated with gamma, delta-dioxovalerate (0.5-1.0 mM) and alanine (20 mM) synthesized 0.19 nmol of porphyrin per 10(7) cells per 2 hr (SD, 0.057). Cell suspensions incubated with delta-aminolevulinic acid (0.1 mM) synthesized 1.26 nmol of porphyrin per 10(7) cells per 2 hr (range, 1.18-1.32). Incubations with chemically synthesized gamma, delta-dioxo[5-14C]valerate were followed by extraction and purification of porphyrin esters and heme. Liquid scintillation counting revealed radiolabel incorporation into both porphyrins and heme. These studies demonstrate significant tetrapyrrole synthesis by the gamma, delta-dioxovalerate transaminase reaction. That gamma, delta-dioxovalerate is an important precursor of heme in vivo must be considered.
本研究的目的是评估肝细胞从γ,δ-二氧戊酸和丙氨酸衍生的δ-氨基乙酰丙酸合成卟啉和血红素的能力。有人提出了一条与δ-氨基乙酰丙酸合成酶(琥珀酰辅酶A:甘氨酸C-琥珀酰转移酶(脱羧),EC 2.3.1.37)催化琥珀酸和甘氨酸缩合不同的δ-氨基乙酰丙酸合成途径。从肝线粒体中分离出γ,δ-二氧戊酸转氨酶支持了这一观点(瓦尔蒂科夫斯基,L.,库什纳,J.P.和伯纳姆,B.F.(1980年)《生物化学杂志》255卷,3742 - 3747页)。γ,δ-二氧戊酸转氨酶通过涉及γ,δ-二氧戊酸和丙氨酸的转氨反应催化δ-氨基乙酰丙酸的形成。为了评估这条替代途径的重要性,我们制备了呼吸的大鼠肝细胞悬液,将其与各种添加剂的最佳浓度一起孵育,然后用分光光度法分析合成的卟啉。在与琥珀酸(1 mM)和甘氨酸(20 mM)一起孵育的细胞悬液中未检测到卟啉合成。与γ,δ-二氧戊酸(0.5 - 1.0 mM)和丙氨酸(20 mM)一起孵育的细胞悬液每2小时每10⁷个细胞合成0.19 nmol卟啉(标准差,0.057)。与δ-氨基乙酰丙酸(0.1 mM)一起孵育的细胞悬液每2小时每10⁷个细胞合成1.26 nmol卟啉(范围,1.18 - 1.32)。用化学合成的γ,δ-二氧代[5 - ¹⁴C]戊酸孵育后,对卟啉酯和血红素进行提取和纯化。液体闪烁计数显示放射性标记掺入到卟啉和血红素中。这些研究表明通过γ,δ-二氧戊酸转氨酶反应有显著的四吡咯合成。必须考虑γ,δ-二氧戊酸是体内血红素的重要前体这一事实。