Todd G P, Haschemeyer R H
Proc Natl Acad Sci U S A. 1981 Nov;78(11):6739-43. doi: 10.1073/pnas.78.11.6739.
Whenever experimental data can be simulated according to a model of the physical process, values of physical parameters in the model can be determined from experimental data by use of a nonlinear least-squares algorithm. We have used this principle to obtain a general procedure for evaluating molecular parameters of solutes redistributing in the ultracentrifuge that uses time-dependent concentration, concentration-difference, or concentration-gradient data. The method gives the parameter values that minimize the sum of the squared differences between experimental data and simulated data calculated from numerical solutions to the differential equation of the ultracentrifuge.
只要实验数据能够根据物理过程模型进行模拟,就可以使用非线性最小二乘法算法从实验数据中确定模型中的物理参数值。我们利用这一原理获得了一种通用程序,用于评估在超速离心机中重新分布的溶质的分子参数,该程序使用随时间变化的浓度、浓度差或浓度梯度数据。该方法给出的参数值能使实验数据与根据超速离心机微分方程的数值解计算得到的模拟数据之间的平方差之和最小。