Keepers J W, Kollman P A, Weiner P K, James T L
Proc Natl Acad Sci U S A. 1982 Sep;79(18):5537-41. doi: 10.1073/pnas.79.18.5537.
Molecular mechanics studies have been carried out on "B-DNA-like" structures of d(C-G-C-G-A-A-T-T-C-G-C-G) and d(A).d(T). Each of the backbone torsion angles (psi, phi, omega, omega', phi') has been "forced" to alternative values from the normal B-DNA values (g(+), t, g(-), g(-), t conformations). Compensating torsion angle changes preserve most of the base stacking energy in the double helix. In a second part of the study, one purine N3-pyrimidine N1 distance at a time has been forced to a value of 6 A in an attempt to simulate the base opening motions required to rationalize proton exchange data for DNA. When the 6-A constraint is removed, many of the structures revert to the normal Watson-Crick hydrogen-bonded structure, but a number are trapped in structures approximately 5 kcal/mol higher in energy than the starting B-DNA structure. The relative energy of these structures, some of which involve a non-Watson-Crick thymine C2(carbonyl)[unk]adenine 6NH(2) hydrogen bond, are qualitatively consistent with the DeltaH for a "base pair-open state" suggested by Mandal et al. of 4-6 kcal/mol [Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979) J. Mol. Biol. 135, 391-411]. The picture of DNA flexibility emerging from this study depicts the backbone as undergoing rapid motion between local torsional minima on a nanosecond time scale. Backbone motion is mainly localized within a dinucleoside segment and generally not conformationally coupled along the chain or across the base pairs. Base motions are much smaller in magnitude than backbone motions. Base sliding allows imino N-H exchange, but it is localized, and only a small fraction of the N-H groups is exposed at any one time. Stacking and hydrogen bonding cause a rigid core of bases in the center of the molecule accounting for the hydrodynamic properties of DNA.
已对d(C-G-C-G-A-A-T-T-C-G-C-G)和d(A).d(T)的“类B-DNA”结构进行了分子力学研究。每个主链扭转角(ψ、φ、ω、ω'、φ')都已从正常B-DNA值(g(+)、t、g(-)、g(-)、t构象)“强制”为其他值。扭转角的补偿性变化保留了双螺旋中大部分的碱基堆积能量。在研究的第二部分,一次将一个嘌呤N3-嘧啶N1距离强制设定为6埃,试图模拟为合理解释DNA质子交换数据所需的碱基打开运动。当去除6埃的限制时,许多结构会恢复到正常的沃森-克里克氢键结构,但有一些会被困在能量比起始B-DNA结构高约5千卡/摩尔的结构中。这些结构的相对能量,其中一些涉及非沃森-克里克胸腺嘧啶C2(羰基)[未识别]腺嘌呤6NH(2)氢键,在定性上与Mandal等人提出的“碱基对开放状态”的ΔH(4-6千卡/摩尔)一致[Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979) J. Mol. Biol. 135, 391-411]。从这项研究中浮现出的DNA灵活性图景描绘了主链在纳秒时间尺度内在局部扭转极小值之间进行快速运动。主链运动主要局限在一个二核苷片段内,并且通常在链上或碱基对之间没有构象耦合。碱基运动的幅度比主链运动小得多。碱基滑动允许亚氨基N-H交换,但它是局部的,并且在任何时候只有一小部分N-H基团暴露。堆积和氢键作用导致分子中心的碱基形成一个刚性核心,这解释了DNA的流体动力学性质。