Suppr超能文献

青蛙视网膜视杆细胞中适应性的纵向传播。

Longitudinal spread of adaptation in the rods of the frog's retina.

作者信息

Hemilä S, Reuter T

出版信息

J Physiol. 1981 Jan;310:501-28. doi: 10.1113/jphysiol.1981.sp013564.

Abstract
  1. The stimulus-response function of the red rods in the retina of the common frog (Rana temporaria) was determined in different adaptational states by measuring aspartate-isolated receptor responses. 2. Flash stimuli, background adaptations and bleaches were delivered through the same optical channel forming an oblique light-beam striking the receptor side of the isolated and flat-mounted retina at an angle of 10 degrees. 3. When the light was blue-green and optimally polarized the absorbance of the receptor layer was about 2, from which follows that 70-80% of the light was absorbed in the distal third of the rod outer segments, i.e. the exposure was local. Homogeneous exposures of the whole rod outer segments were obtained with orange and red lights. 4. Combinations of homogeneous and local stimuli with homogeneous and local adaptations were used to investigate the longitudinal spread of background, intermediate and opsin adaptation, i.e. the sensitivity-reducing effect of a background light, and the transient and permanent sensitivity losses following a bleach isomerizing 3.5-26% (usually 10%) of the rhodopsin in the retina. 5. The results obtained were related to predictions based both on the assumption that the adaptation effects spread longitudinally within the rod outer segments and the assumption that they are strictly confined to the disks absorbing the adapting lights. 6. These comparisons reveal that all three types of adaptation spread longitudinally. It is for instance clear that the sensitivity loss observed with homogeneous stimuli and local adaptation (as compared to homogeneous adaptation) is larger than that predicted by the non-spreading hypothesis. 7. The longitudinal spread of background adaptation is largely finished within 10 sec after turning on the background light, while an efficient spread of the intermediate adaptation effect may require minutes. 8. A background light decreasing the sensitivity by about one log unit decreases the time from flash to response maximum from 5 to 1 sec (small responses). Corresponding opsin adaptation effects are accompanied by less dramatic changes in response kinetics. 9. Independent of adaptation type - homogeneous or local, background, intermediate or opsin - it was found that local stimuli are less efficient that homogeneous stimuli in light-adapted retinae. This effect can be explained assuming that the sensitivity-reducing effects are pronounced in the distal than in the proximal parts of the rod outer segments. 10. The opsin adaptation effect following 10% local bleaches decreases the sensitivity to both homogeneous and local stimuli 2-3 times more than corresponding homogeneous bleaches. This means that the strength of the opsin effect is not related to the average percentage bleached but to the fraction bleached in the distal part of the rod, or generally to the fraction bleached in the most affected region. 11...
摘要
  1. 通过测量天冬氨酸分离的受体反应,确定了普通青蛙(林蛙)视网膜中红视杆细胞在不同适应状态下的刺激-反应功能。2. 闪光刺激、背景适应和漂白通过同一光学通道进行,形成一束倾斜光束,以10度角照射分离并平铺的视网膜的受体一侧。3. 当光为蓝绿色且最佳偏振时,受体层的吸光度约为2,由此可知70-80%的光在视杆外段的远端三分之一处被吸收,即曝光是局部的。用橙色和红色光可实现对视杆外段的均匀曝光。4. 采用均匀和局部刺激与均匀和局部适应的组合,研究背景、中间和视蛋白适应的纵向传播,即背景光的敏感度降低效应,以及视网膜中3.5-26%(通常为10%)的视紫红质漂白后瞬态和永久性的敏感度损失。5. 将所得结果与基于以下两种假设的预测相关联:一种假设是适应效应在视杆外段内纵向传播,另一种假设是它们严格局限于吸收适应光的盘状物中。6. 这些比较表明,所有三种类型的适应都在纵向传播。例如,很明显,与均匀适应相比,均匀刺激和局部适应时观察到的敏感度损失大于非传播假设所预测的损失。7. 背景适应的纵向传播在打开背景光后10秒内基本完成,而中间适应效应的有效传播可能需要数分钟。8. 使敏感度降低约一个对数单位的背景光将闪光到反应最大值的时间从5秒缩短到1秒(小反应)。相应的视蛋白适应效应伴随的反应动力学变化较小。9. 无论适应类型是均匀还是局部、背景、中间还是视蛋白,发现在光适应的视网膜中,局部刺激比均匀刺激效率更低。假设视杆外段远端的敏感度降低效应比近端更明显,就可以解释这种效应。10. 10%局部漂白后的视蛋白适应效应使对均匀和局部刺激的敏感度降低幅度比相应的均匀漂白大2-3倍。这意味着视蛋白效应的强度与平均漂白百分比无关,而是与视杆远端漂白的部分有关,或者一般与受影响最严重区域漂白的部分有关。11...

相似文献

1
Longitudinal spread of adaptation in the rods of the frog's retina.
J Physiol. 1981 Jan;310:501-28. doi: 10.1113/jphysiol.1981.sp013564.
2
Background adaptation in the rods of the frog's retina.
J Physiol. 1977 Mar;265(3):721-41. doi: 10.1113/jphysiol.1977.sp011740.
3
Dark-adaptation in frog rods: changes in the stimulus-response function.
J Physiol. 1979 Feb;287:107-25. doi: 10.1113/jphysiol.1979.sp012649.
4
Spatial spread of activation and background desensitization in toad rod outer segments.
J Physiol. 1981;319:463-96. doi: 10.1113/jphysiol.1981.sp013921.
5
The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.
J Physiol. 1984 Dec;357:575-607. doi: 10.1113/jphysiol.1984.sp015518.
7
Light responses and light adaptation in rat retinal rods at different temperatures.
J Physiol. 2005 Sep 15;567(Pt 3):923-38. doi: 10.1113/jphysiol.2005.090662. Epub 2005 Jul 21.
8
Light adaptation in toad rods: requirement for an internal messenger which is not calcium.
J Physiol. 1979 Dec;297(0):493-520. doi: 10.1113/jphysiol.1979.sp013053.
9
An analysis of light-induced admittance changes in rod outer segments.
J Physiol. 1973 Feb;229(1):185-220. doi: 10.1113/jphysiol.1973.sp010134.
10
Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors.
Proc Natl Acad Sci U S A. 1983 May;80(9):2785-8. doi: 10.1073/pnas.80.9.2785.

引用本文的文献

1
cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses.
Front Mol Neurosci. 2015 Mar 4;8:6. doi: 10.3389/fnmol.2015.00006. eCollection 2015.
2
Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models.
Prog Retin Eye Res. 2012 Sep;31(5):442-66. doi: 10.1016/j.preteyeres.2012.05.002. Epub 2012 May 29.
3
4
Longitudinal spread of second messenger signals in isolated rod outer segments of lizards.
J Physiol. 1999 Sep 15;519 Pt 3(Pt 3):679-92. doi: 10.1111/j.1469-7793.1999.0679n.x.
5
Field sensitivity action spectra of cone photoreceptors in the turtle retina.
J Physiol. 1998 Sep 1;511 ( Pt 2)(Pt 2):479-94. doi: 10.1111/j.1469-7793.1998.479bh.x.
7
Retinal origins of the temperature effect on absolute visual sensitivity in frogs.
J Physiol. 1993 Apr;463:501-21. doi: 10.1113/jphysiol.1993.sp019608.
8
Local effects of bleaching in retinal rods of the toad.
J Physiol. 1982 Jul;328:49-71. doi: 10.1113/jphysiol.1982.sp014252.
9
Spatial spread of activation and background desensitization in toad rod outer segments.
J Physiol. 1981;319:463-96. doi: 10.1113/jphysiol.1981.sp013921.
10
Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors.
Proc Natl Acad Sci U S A. 1983 May;80(9):2785-8. doi: 10.1073/pnas.80.9.2785.

本文引用的文献

1
THE ULTRASTRUCTURE OF THE RECEPTOR OUTER SEGMENTS IN THE RETINA OF THE LEOPARD FROG (RANA PIPIENS).
J Ultrastruct Res. 1965 Feb;12:207-31. doi: 10.1016/s0022-5320(65)80016-8.
2
Retinal stimulation by light substitution.
J Physiol. 1959 Dec;149(2):288-302. doi: 10.1113/jphysiol.1959.sp006340.
3
The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex.
J Gen Physiol. 1954 Jan 20;37(3):381-99. doi: 10.1085/jgp.37.3.381.
4
Spread of activation and desensitisation in rod outer segments.
Nature. 1980 Jan 3;283(5742):85-7. doi: 10.1038/283085a0.
6
The photoproducts of rhodopsin in the isolated retina of the frog.
Vision Res. 1969 Jul;9(7):815-47. doi: 10.1016/0042-6989(69)90017-0.
7
Visual adaptation of the rhodopsin rods in the frogs retina.
J Physiol. 1968 Nov;199(1):59-87. doi: 10.1113/jphysiol.1968.sp008639.
8
Visual pigments of frog and tadpole (Rana pipiens).
Vision Res. 1968 Jul;8(7):761-75. doi: 10.1016/0042-6989(68)90128-4.
9
Dark current and photocurrent in retinal rods.
Biophys J. 1970 May;10(5):380-412. doi: 10.1016/S0006-3495(70)86308-1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验