Rohr T E, Troy F A
J Biol Chem. 1980 Mar 25;255(6):2332-42.
Membranous sialyltransferase complexes from Escherichia coli K-235 catalyze the synthesis of surface polymers containing alpha-2,8-ketosidically linked polysialic acid. Undecaprenyl phosphate functions as an intermediate carrier of sialic acid (NeuNAc) residues between cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuNAc) and an endogenous acceptor (Troy, F.A., and McCloskey, M.A. (1979) J. Biol. Chem 254, 7377-7387). In vitro pulse-chase experiments now confirm that polymer elongation occurs by the addition of sialyl residues to the nonreducing termini of growing nascent chains. Sequential periodate oxidation and borohydride reduction of radiolabeled polysialic acid was used to quantitatively convert the terminal, nonreducing sialic acid to the 7-carbon analogue, 5-acetamido-3,5-dideoxy-L-arabino-2-heptulosonic acid (NeuNAc7). After complete hydrolysis of the polymers by neuraminidase, the ratio between NeuNAc and NeuNAc7 was used to determine the average degree of polymerization (D.P.). The membrane preparations used as a source of enzyme contained endogenous sialyl polymers that averaged 165 residues in length. During the first phase of in vitro synthesis, lasting about 90 min, 40 to 45 sialyl residues were transferred onto these endogenous acceptors. Subsequent in vitro incorporation increased at a slower, constant rate for at least 16 h. During this second phase of synthesis, the D.P. of newly synthesized chains remained relatively constant while the number of nonreducing terminal end groups, a measure of the number of new sialyl chains, increased. These results establish that individual polymer chains are rapidly elongated in vitro to a defined length of about 200 sialyl residues, then terminated and new chains started. The mechanism signaling chain termination, translocation of the sialyltransferase to a new acceptor, and chain reinitiation remains to be determined. Endogenous and enzymatically synthesized sialyl polymers were solubilized with Triton X-100 and purified to apparent homogeneity. Sialic acid accounted for approximately 93% of the mass of these polymers which had no free reducing terminal sialic acid. This position of the molecule is presumably occupied by an as yet unidentified component which links the sialyl polymer to the membrane.
来自大肠杆菌K - 235的膜唾液酸转移酶复合物催化含α - 2,8 - 酮糖苷键连接的聚唾液酸的表面聚合物的合成。十一碳烯磷酸酯作为唾液酸(NeuNAc)残基在胞苷5'-单磷酸 - N - 乙酰神经氨酸(CMP - NeuNAc)和内源性受体之间的中间载体(Troy,F.A.,和McCloskey,M.A.(1979)J. Biol. Chem 254,7377 - 7387)。体外脉冲追踪实验现在证实聚合物的延长是通过将唾液酸残基添加到正在生长的新生链的非还原末端来实现的。对放射性标记的聚唾液酸进行顺序高碘酸盐氧化和硼氢化钠还原,用于将末端非还原唾液酸定量转化为7 - 碳类似物,5 - 乙酰氨基 - 3,5 - 二脱氧 - L - 阿拉伯糖 - 2 - 庚酮糖酸(NeuNAc7)。在用神经氨酸酶完全水解聚合物后,NeuNAc与NeuNAc7之间的比率用于确定平均聚合度(D.P.)。用作酶来源的膜制剂含有平均长度为165个残基的内源性唾液酸聚合物。在体外合成的第一阶段,持续约90分钟,40至45个唾液酸残基转移到这些内源性受体上。随后的体外掺入以较慢的恒定速率增加至少16小时。在合成的第二阶段,新合成链的D.P.保持相对恒定,而非还原末端基团的数量(新唾液酸链数量的一种度量)增加。这些结果表明,单个聚合物链在体外迅速延长至约200个唾液酸残基的确定长度,然后终止并开始新链。信号链终止、唾液酸转移酶向内源性受体的转位以及链重新起始的机制仍有待确定。内源性和酶促合成的唾液酸聚合物用Triton X - 100溶解并纯化至表观均一性。唾液酸约占这些聚合物质量的93%,这些聚合物没有游离的还原末端唾液酸。分子的这个位置大概被一个尚未鉴定的成分占据,该成分将唾液酸聚合物与膜连接起来。