Craig S W, Lancashire C L
J Cell Biol. 1980 Mar;84(3):655-67. doi: 10.1083/jcb.84.3.655.
To explore the suggestion that alpha-actinin cross-links actin filaments to the microvillar membrane (Mooseker and Tilney, 1975, J. Cell Biol. 67:725--743; Mooseker, 1976, J. Cell Biol. 71-417--433), we have assessed the possible relatedness of alpha-actinin and the brush-border 95-kdalton protein by four independent criteria: antigenicity, mobility on SDS gels, extractability in nonionic detergents, and peptide maps. We have found that anti-chicken gizzard alpha-actinin stains the junctional complex region of intact cells (Craig and Pardo, 1979, J. Cell Biol. 80:203--210) but does not stain isolated brush borders even though these structures contain a 95-kdalton polypeptide. Lack of staining is not caused by failure of the antibody to penetrate, as antiactin stains both the terminal web and the microvilli of isolated brush borders. By the antibody SDS gel overlay technique, we have established that anti-gizzard alpha-actinin recognizes homologous molecules in chicken skeletal and cardiac muscles, as well as in intestinal epithelial cells, but fails to recognize the brush-border 95-kdalton polypeptide. Conversely, anti-95-kdalton polypeptide does not recognize gizzard alpha-actinin. On high-resolution SDS polyacrylamide gel electrophoresis, alpha-actinin and brush-border 95-kdalton protein exhibit distinct mobilities. The two proteins also differ in their ability to be extracted in nonionic mobilities. The two proteins also differ in their ability to be extracted in nonionic detergent: epithelial cell immunoreactive alpha-actinin is soluble in NP-40, whereas 95-kdalton protein is insoluble. Finally, two-dimensional peptide mapping of iodinated tryptic peptides, as well as one-dimensional fingerprinting of partial tryptic, chymotryptic, papain, and S. aureus V8 protease digests, have revealed less than 5% homology between gizzard alpha-actinin and brush-border 95-kdalton polypeptide. The data suggest that there is no major structural homology between gizzard alpha-actinin and brush-border 95-kdalton protein. We conclude that it is unlikely that alpha-actinin cross-links actin filaments to the microvillar membrane.
为了探究α-辅肌动蛋白将肌动蛋白丝交联到微绒毛膜上的这一假说(穆斯克和蒂尔尼,1975年,《细胞生物学杂志》67:725 - 743;穆斯克,1976年,《细胞生物学杂志》71:417 - 433),我们通过四个独立标准评估了α-辅肌动蛋白与刷状缘95千道尔顿蛋白之间可能的相关性:抗原性、在十二烷基硫酸钠(SDS)凝胶上的迁移率、在非离子去污剂中的可提取性以及肽图。我们发现,抗鸡肌胃α-辅肌动蛋白能对完整细胞的连接复合体区域进行染色(克雷格和帕尔多,1979年,《细胞生物学杂志》80:203 - 210),但即使这些结构含有一种95千道尔顿的多肽,也不会对分离出的刷状缘进行染色。染色缺失并非由抗体无法穿透所致,因为抗肌动蛋白能对分离出的刷状缘的终末网和微绒毛进行染色。通过抗体SDS凝胶覆盖技术,我们确定抗肌胃α-辅肌动蛋白能识别鸡骨骼肌、心肌以及肠上皮细胞中的同源分子,但无法识别刷状缘95千道尔顿的多肽。相反,抗95千道尔顿多肽不能识别肌胃α-辅肌动蛋白。在高分辨率SDS聚丙烯酰胺凝胶电泳中,α-辅肌动蛋白和刷状缘95千道尔顿蛋白表现出不同的迁移率。这两种蛋白在非离子去污剂中的可提取能力也有所不同:上皮细胞免疫反应性α-辅肌动蛋白可溶于NP - 40,而95千道尔顿蛋白不溶。最后从碘化胰蛋白酶肽段的二维肽图以及部分胰蛋白酶消化、胰凝乳蛋白酶消化、木瓜蛋白酶消化和金黄色葡萄球菌V8蛋白酶消化的一维指纹图谱来看[此处原英文表述有误,已修正为“一维指纹图谱来看”],肌胃α-辅肌动蛋白与刷状缘95千道尔顿多肽之间的同源性低于5%。这些数据表明,肌胃α-辅肌动蛋白与刷状缘95千道尔顿蛋白之间不存在主要的结构同源性。我们得出结论,α-辅肌动蛋白不太可能将肌动蛋白丝交联到微绒毛膜上。