Suppr超能文献

噬菌体T4基因5和基因s产物在细胞裂解中的作用。

Roles of bacteriophage T4 gene 5 and gene s products in cell lysis.

作者信息

Kao S H, McClain W H

出版信息

J Virol. 1980 Apr;34(1):104-7. doi: 10.1128/JVI.34.1.104-107.1980.

Abstract

Previous studies indicated that (i) T4 gene s product (gps) protects infected cells from superinfection lysis from without, (ii) the absence of gps in infected cells also leads to lysis from within even when T4 e lysozyme is absent, (iii) T4 gene 5 product (gp5), a polypeptide of the virion baseplate, may be responsible for inducing lysis from without, and (iv) altered gp5 of the T4 mutant 5ts1 can replace e lysozyme to cause lysis from within. Results of this study showed that (i) wild-type gp5 in infected cells lacking e lysozyme was responsible for lysis from within in the absence of gps, and (ii) gps did not protect infected cells from superinfection lysis from without by 5ts1 phage. We prpose that gps normally prevents functional expression of wild-type gp5 activity from either side of the cell wall, whereas the 5ts1 form of gp5 is insensitive to the gps barrier and induces lysis from either side of the cell wall.

摘要

先前的研究表明

(i)T4基因s产物(gps)可保护受感染细胞免受外部超感染裂解;(ii)即使不存在T4 e溶菌酶,受感染细胞中gps的缺失也会导致内部裂解;(iii)T4基因5产物(gp5),一种病毒粒子基板的多肽,可能负责诱导外部裂解;(iv)T4突变体5ts1的改变的gp5可以替代e溶菌酶导致内部裂解。本研究结果表明:(i)在缺乏e溶菌酶的受感染细胞中,野生型gp5在不存在gps的情况下负责内部裂解;(ii)gps不能保护受感染细胞免受5ts1噬菌体的外部超感染裂解。我们推测,gps通常可防止野生型gp5活性在细胞壁两侧的功能性表达,而gp5的5ts1形式对gps屏障不敏感,并可诱导细胞壁两侧的裂解。

相似文献

1
Roles of bacteriophage T4 gene 5 and gene s products in cell lysis.
J Virol. 1980 Apr;34(1):104-7. doi: 10.1128/JVI.34.1.104-107.1980.
2
Baseplate protein of bacteriophage T4 with both structural and lytic functions.
J Virol. 1980 Apr;34(1):95-103. doi: 10.1128/JVI.34.1.95-103.1980.
4
Isolation and characterization of the bacteriophage T4 tail-associated lysozyme.
J Virol. 1985 May;54(2):460-6. doi: 10.1128/JVI.54.2.460-466.1985.
5
Identification of T4 gene 25 product, a component of the tail baseplate, as a 15K lysozyme.
Mol Gen Genet. 1986 Mar;202(3):363-7. doi: 10.1007/BF00333263.
6
Bacteriophage T4 resistance to lysis-inhibition collapse.
Genet Res. 1999 Aug;74(1):1-11. doi: 10.1017/s0016672399003833.
8
Structure and Function of the T4 Spackle Protein Gp61.3.
Viruses. 2020 Sep 24;12(10):1070. doi: 10.3390/v12101070.
9
Mapping of functional sites on the primary structure of the tail lysozyme of bacteriophage T4 by mutational analysis.
Biochim Biophys Acta. 1998 May 19;1384(2):243-52. doi: 10.1016/s0167-4838(98)00016-8.
10
Selection for lysis inhibition in bacteriophage.
J Theor Biol. 1990 Oct 21;146(4):501-11. doi: 10.1016/s0022-5193(05)80375-3.

引用本文的文献

1
Structural basis of superinfection exclusion by bacteriophage T4 Spackle.
Commun Biol. 2020 Nov 19;3(1):691. doi: 10.1038/s42003-020-01412-3.
2
Structure and Function of the T4 Spackle Protein Gp61.3.
Viruses. 2020 Sep 24;12(10):1070. doi: 10.3390/v12101070.
3
Crystal structure of bacteriophage T4 Spackle as determined by native SAD phasing.
Acta Crystallogr D Struct Biol. 2020 Sep 1;76(Pt 9):899-904. doi: 10.1107/S2059798320010979. Epub 2020 Aug 25.
5
Molecular assembly and structure of the bacteriophage T4 tail.
Biophys Rev. 2016 Dec;8(4):385-396. doi: 10.1007/s12551-016-0230-x. Epub 2016 Nov 5.
6
Structural remodeling of bacteriophage T4 and host membranes during infection initiation.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4919-28. doi: 10.1073/pnas.1501064112. Epub 2015 Aug 17.
7
A Mimivirus Enzyme that Participates in Viral Entry.
Structure. 2015 Jun 2;23(6):1058-65. doi: 10.1016/j.str.2015.03.023. Epub 2015 May 14.
8
The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein.
J Bacteriol. 2012 Sep;194(18):5012-9. doi: 10.1128/JB.00843-12. Epub 2012 Jul 13.
10
ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex.
J Bacteriol. 2008 May;190(10):3606-12. doi: 10.1128/JB.00095-08. Epub 2008 Mar 7.

本文引用的文献

1
Lysis and Lysis Inhibition with Escherichia coli Bacteriophage.
J Bacteriol. 1948 Feb;55(2):257-76. doi: 10.1128/jb.55.2.257-276.1948.
2
Mapping experiments with r mutants of bacteriophage T4D.
Genetics. 1962 Feb;47(2):179-86. doi: 10.1093/genetics/47.2.179.
3
Resistance to lysis from without in bacteria infected with T2 bacteriophage.
J Bacteriol. 1953 Sep;66(3):247-53. doi: 10.1128/jb.66.3.247-253.1953.
4
Baseplate protein of bacteriophage T4 with both structural and lytic functions.
J Virol. 1980 Apr;34(1):95-103. doi: 10.1128/JVI.34.1.95-103.1980.
6
Lysis inhibition in Escherichia coli infected with bacteriophage T4.
J Virol. 1967 Oct;1(5):948-55. doi: 10.1128/JVI.1.5.948-955.1967.
7
Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli.
J Virol. 1968 Apr;2(4):346-56. doi: 10.1128/JVI.2.4.346-356.1968.
8
Enzymatic activities on cell walls in bacteriophage T4.
Biochim Biophys Acta. 1969 May 27;178(3):542-50. doi: 10.1016/0005-2744(69)90223-x.
9
The role of phage lysozyme in the life cycle of phage T4.
Virology. 1968 Nov;36(3):387-91. doi: 10.1016/0042-6822(68)90163-3.
10
Lysis of T4-infected bacteria in the absence of lysozyme.
Virology. 1968 May;35(1):158-65. doi: 10.1016/0042-6822(68)90315-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验