Suppr超能文献

吞噬溶酶体融合的抑制作用定位于鹦鹉热衣原体负载的液泡。

Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles.

作者信息

Eissenberg L G, Wyrick P B

出版信息

Infect Immun. 1981 May;32(2):889-96. doi: 10.1128/iai.32.2.889-896.1981.

Abstract

Intracellular survival of Chlamydia psittaci is in part dependent on the ability of the organism to thwart phagolysosome formation. Circumvention of phagolysosome fusion could be either localized to chlamydia-laden vacuoles or generalized to all phagosomes in the host cell. To determine which of these modes is in operation the ability of chlamydia elementary and reticulate bodies to protect Saccharomyces cerevisiae from degradation in macrophage phagolysosomes was examined via acridine orange and Giemsa staining. No statistically significant difference was evident between the amount of fusion observed in coinfected macrophages and those infected with yeast cells alone. This was ot dependent on some unique interaction between the chlamydia and the yeast cells since viable count studies to determine the protection of a second organism, Escherichia coli, also failed to show significantly different amounts of inactivation of the bacteria by macrophages in the presence of C. psittaci. Therefore, the inhibition of phagolysosome fusion is localized to chlamydia-laden phagosomes.

摘要

鹦鹉热衣原体在细胞内的存活部分取决于该生物体阻止吞噬溶酶体形成的能力。吞噬溶酶体融合的规避可能局限于载有衣原体的液泡,也可能扩展到宿主细胞内的所有吞噬体。为了确定这些模式中的哪一种在起作用,通过吖啶橙和吉姆萨染色检查了衣原体原体和网状体保护酿酒酵母免受巨噬细胞吞噬溶酶体降解的能力。在共感染的巨噬细胞中观察到的融合量与仅感染酵母细胞的巨噬细胞之间没有明显的统计学差异。这并不依赖于衣原体与酵母细胞之间的某些独特相互作用,因为用于确定第二种生物体大肠杆菌受到保护的活菌计数研究也未能显示在存在鹦鹉热衣原体的情况下巨噬细胞对细菌的灭活量有显著差异。因此,吞噬溶酶体融合的抑制局限于载有衣原体的吞噬体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726e/351526/4b469e741084/iai00163-0489-a.jpg

相似文献

1
Inhibition of phagolysosome fusion is localized to Chlamydia psittaci-laden vacuoles.
Infect Immun. 1981 May;32(2):889-96. doi: 10.1128/iai.32.2.889-896.1981.
2
Interaction of Chlamydia psittaci reticulate bodies with mouse peritoneal macrophages.
Infect Immun. 1979 Jun;24(3):697-700. doi: 10.1128/iai.24.3.697-700.1979.
3
Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion.
Infect Immun. 1983 May;40(2):741-51. doi: 10.1128/iai.40.2.741-751.1983.
5
The intracellular life of Chlamydia psittaci: how do the bacteria interact with the host cell?
FEMS Microbiol Rev. 1998 Jun;22(2):65-78. doi: 10.1111/j.1574-6976.1998.tb00361.x.
6
Growth of Chlamydia psittaci in macrophages.
Infect Immun. 1978 Mar;19(3):1054-60. doi: 10.1128/iai.19.3.1054-1060.1978.
10
Isolation and characterization of phagosomes containing Chlamydia psittaci from L cells.
Infect Immun. 1982 Oct;38(1):325-42. doi: 10.1128/iai.38.1.325-342.1982.

引用本文的文献

1
Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.
PLoS One. 2013 Jul 23;8(7):e69769. doi: 10.1371/journal.pone.0069769. Print 2013.
3
Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia.
J Bacteriol. 2011 Nov;193(22):6123-31. doi: 10.1128/JB.05976-11. Epub 2011 Sep 9.
4
Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
Infect Immun. 2011 Oct;79(10):4019-28. doi: 10.1128/IAI.05308-11. Epub 2011 Aug 1.
5
Killing me softly: chlamydial use of proteolysis for evading host defenses.
Trends Microbiol. 2009 Oct;17(10):467-74. doi: 10.1016/j.tim.2009.07.007. Epub 2009 Sep 16.
6
The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells.
Infect Immun. 2008 Aug;76(8):3415-28. doi: 10.1128/IAI.01377-07. Epub 2008 May 12.
8
Localization of the hypothetical protein Cpn0585 in the inclusion membrane of Chlamydia pneumoniae-infected cells.
Microb Pathog. 2007 Feb-Mar;42(2-3):111-6. doi: 10.1016/j.micpath.2006.11.006. Epub 2007 Jan 22.
9
Human antibody responses to a Chlamydia-secreted protease factor.
Infect Immun. 2004 Dec;72(12):7164-71. doi: 10.1128/IAI.72.12.7164-7171.2004.
10
Influence of extracellular bactericidal agents on bacteria within macrophages.
Infect Immun. 2003 Feb;71(2):1016-9. doi: 10.1128/IAI.71.2.1016-1019.2003.

本文引用的文献

2
THE DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES. MORPHOLOGY, CYTOCHEMISTRY, AND BIOCHEMISTRY.
J Exp Med. 1965 Jan 1;121(1):153-70. doi: 10.1084/jem.121.1.153.
3
PURIFICATION AND CHEMICAL COMPOSITION OF MENINGOPNEUMONITIS VIRUS.
Virology. 1963 Aug;20:596-604. doi: 10.1016/0042-6822(63)90284-8.
4
Ammonia inhibits phagosome-lysosome fusion in macrophages.
Nature. 1980 Jul 3;286(5768):79-80. doi: 10.1038/286079a0.
7
Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development.
J Bacteriol. 1972 May;110(2):706-21. doi: 10.1128/jb.110.2.706-721.1972.
9
Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A. 1976 Jul;73(7):2510-4. doi: 10.1073/pnas.73.7.2510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验