Suppr超能文献

大肠杆菌噬菌体T1和T7对粘土矿物的吸附作用。

Adsorption of coliphages T1 and T7 to clay minerals.

作者信息

Schiffenbauer M, Stotzky G

出版信息

Appl Environ Microbiol. 1982 Mar;43(3):590-6. doi: 10.1128/aem.43.3.590-596.1982.

Abstract

Coliphages T1 and T7 of Escherichia coli were absorbed by kaolinite (K) and montmorillonite (M). Maximum adsorption of T7 (96%) to M was greater than that of T1 (84%), but the adsorption of both coliphages to K was the same (99%). Positively charged sites (i.e., anion exchange sites) on the clays appeared to be primarily responsible for the adsorption of T1 to K but only partially responsible for the adsorption of T1 to M; equilibrium adsorption isotherms of T1 to K and M did not show a correlation between adsorption and the cation exchange capacity of the clays, and the reduction in adsorption caused by sodium metaphosphate (a polyanion that interacts with positively charged sites on clay) was more pronounced with K than with M. The equilibrium adsorption isotherms of T7 to K and M suggested a correlation between adsorption and the cation exchange capacity of the clays. However, studies with sodium metaphosphate indicated that T7 also adsorbed to positively charged sites on the clays, especially on K. Adsorption of the coliphages to positively charged sites was greater with K than with M, probably because the ratio of positively charged sites to negatively charged sites was greater on K than on M.

摘要

大肠杆菌的噬菌体T1和T7可被高岭土(K)和蒙脱石(M)吸附。T7对M的最大吸附率(96%)高于T1对M的最大吸附率(84%),但两种噬菌体对K的吸附率相同(99%)。黏土上带正电荷的位点(即阴离子交换位点)似乎是T1吸附到K上的主要原因,但只是T1吸附到M上的部分原因;T1在K和M上的平衡吸附等温线并未显示吸附与黏土阳离子交换容量之间的相关性,并且偏磷酸钠(一种与黏土上带正电荷位点相互作用的聚阴离子)导致的吸附减少在K上比在M上更明显。T7在K和M上的平衡吸附等温线表明吸附与黏土阳离子交换容量之间存在相关性。然而,用偏磷酸钠进行的研究表明,T7也吸附到黏土上带正电荷的位点,尤其是在K上。噬菌体在K上比在M上对带正电荷位点的吸附更强,这可能是因为K上带正电荷位点与带负电荷位点的比例大于M上的比例。

相似文献

1
Adsorption of coliphages T1 and T7 to clay minerals.
Appl Environ Microbiol. 1982 Mar;43(3):590-6. doi: 10.1128/aem.43.3.590-596.1982.
2
Specificity of virus adsorption to clay minerals.
Can J Microbiol. 1985 Jan;31(1):50-3. doi: 10.1139/m85-011.
3
Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.
Appl Environ Microbiol. 1983 Sep;46(3):673-82. doi: 10.1128/aem.46.3.673-682.1983.
4
5
Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene.
Ecotoxicol Environ Saf. 2018 Oct;161:237-244. doi: 10.1016/j.ecoenv.2018.05.091. Epub 2018 Jun 6.
6
Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.
J Hazard Mater. 2008 Jan 15;150(1):115-23. doi: 10.1016/j.jhazmat.2007.04.093. Epub 2007 Apr 24.
7
Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.
Colloids Surf B Biointerfaces. 2011 Mar;83(1):122-7. doi: 10.1016/j.colsurfb.2010.11.018. Epub 2010 Nov 17.
8
Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model.
J Environ Radioact. 2016 Jun;157:136-48. doi: 10.1016/j.jenvrad.2016.03.014. Epub 2016 Apr 12.
9
Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite.
Chemosphere. 2019 Apr;220:696-705. doi: 10.1016/j.chemosphere.2018.12.137. Epub 2018 Dec 20.
10
Adsorption of picloram on clays nontronite, illite and kaolinite: equilibrium and herbicide-clays surface complexes.
J Environ Sci Health B. 2019;54(4):281-289. doi: 10.1080/03601234.2018.1561055. Epub 2019 Feb 12.

引用本文的文献

1
Bentonite in Korea: A Resource and Research Focus for Biomedical and Cosmetic Industries.
Materials (Basel). 2024 Apr 24;17(9):1982. doi: 10.3390/ma17091982.
3
A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art.
Nanomaterials (Basel). 2023 Feb 24;13(5):848. doi: 10.3390/nano13050848.
4
Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production.
Front Vet Sci. 2022 May 10;9:889612. doi: 10.3389/fvets.2022.889612. eCollection 2022.
6
Role of biofilm on virus inactivation in limestone aquifers: implications for managed aquifer recharge.
J Environ Health Sci Eng. 2020 Jan 15;18(1):21-34. doi: 10.1007/s40201-019-00431-5. eCollection 2020 Jun.
7
Bentonite Clay as a Natural Remedy: A Brief Review.
Iran J Public Health. 2017 Sep;46(9):1176-1183.
8
Bacteriophages and Bacterial Plant Diseases.
Front Microbiol. 2017 Jan 20;8:34. doi: 10.3389/fmicb.2017.00034. eCollection 2017.
9
Toward Accurate Adsorption Energetics on Clay Surfaces.
J Phys Chem C Nanomater Interfaces. 2016 Nov 23;120(46):26402-26413. doi: 10.1021/acs.jpcc.6b09559. Epub 2016 Oct 31.
10
Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay.
Microbiologyopen. 2014 Feb;3(1):42-51. doi: 10.1002/mbo3.148. Epub 2013 Dec 19.

本文引用的文献

1
Molecular kinetic and electrophoretic properties of bacteriophages.
Science. 1950 May 5;111(2888):481-8. doi: 10.1126/science.111.2888.481.
2
Concentration of coliphages from large volumes of water and wastewater.
Appl Environ Microbiol. 1980 Jan;39(1):85-91. doi: 10.1128/aem.39.1.85-91.1980.
3
Poliovirus concentration from tap water with electropositive adsorbent filters.
Appl Environ Microbiol. 1980 Aug;40(2):201-10. doi: 10.1128/aem.40.2.201-210.1980.
5
Orientation of clay particles sorbed on bacteria possessing different ionogenic surfaces.
Biochim Biophys Acta. 1969;193(2):472-4. doi: 10.1016/0005-2736(69)90206-5.
7
Interaction between colloidal montmorillonite and cells of Rhizobium species with different inogenic surfaces.
Biochim Biophys Acta. 1968 Feb 1;156(1):179-86. doi: 10.1016/0304-4165(68)90117-7.
8
Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria.
Can J Microbiol. 1966 Jun;12(3):547-63. doi: 10.1139/m66-078.
9
Viruses in soil systems.
CRC Crit Rev Microbiol. 1979 Nov;7(3):245-301. doi: 10.3109/10408417909082016.
10
Comparative adsorption of human enteroviruses, simian rotavirus, and selected bacteriophages to soils.
Appl Environ Microbiol. 1979 Aug;38(2):241-7. doi: 10.1128/aem.38.2.241-247.1979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验