Pompon D
Eur J Biochem. 1980 May;106(1):151-9.
It has been shown recently that the use of L-(+)-[2-2H]lactate as substrate instead of unlabeled L-(+)-lactate induces a lowering of the flavin reduction rate of cytochrome b2 by a factor of 8 [D. Pompon, M. Iwatsubo, and F. Lederer (1980) Eur. J. Biochem. 104, 479--488]. This high isotope effect enabled us to study electron transfer between prosthetic groups at a very low rate of electron entry. The kinetic scheme for electron transfer in cytochrome b2 proposed by Capeillère-Blandin [Eur. J. Biochem. 56, 91--101 (1975)] is examined here in the light of the kinetic data reported in our preceding paper. This study indicates some disagreements, particularly at a low rate of electron entry. New kinetic schemes capable of explaining data obtained with deuterated lactate are proposed. These new schemes differ from that of Capeillère-Blandin in that: (a) the hypothesis of simultaneous prosthetic group reduction for the two protomers of one given dimer is abandoned; (b) the limiting step of the slow phases of heme and flavin reduction is a slow interprotomer electron exchange between a heme pair, a flavin pair or heme and flavin; (c) a rather fast conformational change controlled by the redox state of heme or flavin of one promoter can modulate the rate of electron transfer in another promoter. These new kinetic schemes allow us to determine the rate of intraprotomer and interprotomer electron transfer and to decide precisely how these steps are modified by the proteolytic cleavage of 'intact' enzyme to 'cleaved' enzyme.
最近研究表明,使用L-(+)-[2-²H]乳酸作为底物而非未标记的L-(+)-乳酸,会使细胞色素b2的黄素还原速率降低8倍[D. 庞蓬、M. 岩坪和F. 莱德勒(1980年),《欧洲生物化学杂志》104卷,479 - 488页]。这种高同位素效应使我们能够在极低的电子进入速率下研究辅基之间的电子转移。本文根据我们前文报道的动力学数据,对卡佩勒 - 布兰丁提出的细胞色素b2中电子转移的动力学方案[《欧洲生物化学杂志》56卷,91 - 101页(1975年)]进行了研究。这项研究表明存在一些分歧,特别是在低电子进入速率时。提出了能够解释用氘代乳酸获得的数据的新动力学方案。这些新方案与卡佩勒 - 布兰丁的方案不同之处在于:(a) 放弃了对于给定二聚体的两个原聚体同时还原辅基的假设;(b) 血红素和黄素还原慢相的限速步骤是血红素对、黄素对或血红素与黄素之间缓慢的原聚体间电子交换;(c) 由一个原聚体的血红素或黄素的氧化还原状态控制的相当快速的构象变化,可以调节另一个原聚体中的电子转移速率。这些新的动力学方案使我们能够确定原聚体内和原聚体间的电子转移速率,并精确确定这些步骤是如何通过将“完整”酶蛋白水解切割成“切割”酶而被改变的。