Daff S, Ingledew W J, Reid G A, Chapman S K
Department of Chemistry, University of Edinburgh, Scotland, UK.
Biochemistry. 1996 May 21;35(20):6345-50. doi: 10.1021/bi9522559.
Flavocytochrome b2 from Saccharomyces cerevisiae couples L-lactate dehydrogenation to cytochrome c reduction in the mitochondrial intermembrane space. The catalytic cycle for this process can be described in terms of five consecutive electron-transfer events. L-Lactate dehydrogenation results in the two-electron reduction of FMN. The two electrons are individually passed to b2-heme (intramolecular electron transfer) and then onto cytochrome c (intermolecular electron transfer). At 25 degrees C, I 0.10, in the presence of saturating concentrations of ferricytochrome c and L-lactate, the catalytic cycle progresses with rate constant 104 (+/- 5) s-1 [per L-lactate oxidized; Miles, C. S., Rouviere-Fourmy, N., Lederer, F., Mathews, F. S., Reid, G. A., & Chapman, S. K. (1992) Biochem. J. 285, 187-192]. Stopped-flow spectrophotometry has been used to show that the major rate-limiting step in the catalytic cycle is electron transfer from flavin semiquinone to b2-heme. This conclusion is based on the observation that pre-steady-state flavin oxidation by ferricytochrome c takes place at 120 s-1. Although flavin oxidation involves several other electron transfer steps, these are considered too fast to contribute significantly to the rate constant. It was also shown that the reaction product, pyruvate, is able to inhibit pre-steady-state flavin oxidation (Ki = 40 +/- 17 mM) consistent with reports that it acts as a noncompetitive inhibitor in the steady state at high concentrations [Ki = 30 mM; Lederer, F. (1978) Eur. J. Biochem, 88, 425-431]. This novel way of measuring the electron transfer rate constant is directly applicable to the catalytic cycle and has enabled us to derive a self-consistent model for it, based also on data collected for enzyme reduction [Miles, C. S., Rouviere-Fourmy, N., Lederer, F., Mathews, F. S., Reid, G. A., & Chapman, S. K. (1992) Biochem. J. 285, 187-192] and its interaction with cytochrome c [Daff, S., Sharp, R. E., Short, D. M., Bell, C., White, P., Manson, F. D. C., Reid, G. A., & Chapman, S. K. (1996) Biochemistry 35, 6351-6357]. Rapid-freezing quenched-flow EPR has been used to confirm the model by demonstrating that during steady-state turnover of the enzyme approximately 75% of the flavin is in the semiquinone oxidation state.
来自酿酒酵母的黄素细胞色素b2在线粒体外膜间隙中将L-乳酸脱氢与细胞色素c还原偶联起来。该过程的催化循环可用五个连续的电子转移事件来描述。L-乳酸脱氢导致FMN的双电子还原。这两个电子分别传递给b2-血红素(分子内电子转移),然后传递给细胞色素c(分子间电子转移)。在25℃、离子强度I = 0.10、高铁细胞色素c和L-乳酸饱和浓度存在的条件下,催化循环以速率常数104(±5)s-1进行[每氧化一分子L-乳酸;迈尔斯,C.S.,鲁维耶-富尔米,N.,勒德雷尔,F.,马修斯,F.S.,里德,G.A.,&查普曼,S.K.(1992)《生物化学杂志》285,187 - 192]。停流分光光度法已被用于表明催化循环中的主要限速步骤是从黄素半醌到b2-血红素的电子转移。这一结论基于以下观察结果:高铁细胞色素c对黄素的预稳态氧化发生速率为120 s-1。尽管黄素氧化涉及其他几个电子转移步骤,但这些步骤被认为太快,对速率常数的贡献不大。还表明反应产物丙酮酸能够抑制预稳态黄素氧化(Ki = 40 ± 17 mM),这与它在高浓度下作为稳态非竞争性抑制剂的报道一致[Ki = 30 mM;勒德雷尔,F.(1978)《欧洲生物化学杂志》88,425 - 431]。这种测量电子转移速率常数的新方法直接适用于催化循环,并使我们能够基于酶还原[迈尔斯,C.S.,鲁维耶-富尔米,N.,勒德雷尔,F.,马修斯,F.S.,里德,G.A.,&查普曼,S.K.(1992)《生物化学杂志》285,187 - 192]及其与细胞色素c相互作用[达夫,S.,夏普,R.E.,肖特,D.M.,贝尔,C.,怀特,P.,曼森,F.D.C.,里德,G.A.,&查普曼,S.K.(1996)《生物化学》35,6351 - 635]所收集的数据,推导出一个自洽的模型。快速冷冻淬灭流EPR已被用于通过证明在酶的稳态周转过程中约75%的黄素处于半醌氧化态来证实该模型。