Suppr超能文献

Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake.

作者信息

Granger H J, Nyhof R A

出版信息

Am J Physiol. 1982 Aug;243(2):G91-6. doi: 10.1152/ajpgi.1982.243.2.G91.

Abstract

The oxygenation of intestinal tissue is dependent on the interaction of three distinctive transport processes: 1) convection (i.e., blood flow), 2) diffusion, and 3) chemical reaction. Oxygen is transported to the capillary level by convection. Local adjustments of blood flow in accordance with tissue oxygen demand serve to stabilize capillary oxygen tension. After reaching the capillary, oxygen is transferred into the parenchymal cells by diffusion. Intrinsic modulation of the number of perfused capillaries allows vascular control of exchange surface area and effective capillary-to-cell diffusion distance. On entering the cell, molecular oxygen acts as the electron acceptor responsible for maintaining continuous mitochondrial respiration and the interlinked oxidative formation of ATP. The basic interaction of blood flow, diffusion, and mitochondrial respiration under a variety of conditions are illustrated utilizing a simplified graphic approach. The analysis demonstrates the ability of the flow and exchange controllers, operating in unison, to provide a wide margin of safety against development of cell hypoxia under a variety of stresses. Finally, the role of oxygen, adenosine, and prostaglandins as possible mediators of intrinsic vasoregulation in intestine is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验