Suppr超能文献

肺结节检测中的视觉扫描、模式识别与决策

Visual scanning, pattern recognition and decision-making in pulmonary nodule detection.

作者信息

Kundel H L, Nodine C F, Carmody D

出版信息

Invest Radiol. 1978 May-Jun;13(3):175-81. doi: 10.1097/00004424-197805000-00001.

Abstract

Eye movements were recorded while four subjects searched a set of 60 films, 24 normal and 36 abnormal for pulmonary nodules. Error rates, scanning patterns and the dwell time of fixation clusters on normal and nodule-containing areas of the film were studied. Using the assumption that prolonged dwell time indicates intensive processing of visual data, a model was developed for nodule detection that includes four steps: orientation, scanning, pattern recognition and decision-making. False-negative errors were divided into three classes: scanning errors, recognition errors and decision-making errors. Of 20 false-negative errors, 30% were considered scanning, 25% recognition and 45% decision-making.

摘要

在四名受试者搜索一组60部肺部结节影片(24部正常影片和36部异常影片)时记录眼动情况。研究了错误率、扫描模式以及注视簇在影片正常区域和含结节区域的停留时间。基于延长停留时间表明对视觉数据进行密集处理这一假设,开发了一种用于结节检测的模型,该模型包括四个步骤:定向、扫描、模式识别和决策。假阴性错误分为三类:扫描错误、识别错误和决策错误。在20例假阴性错误中,30%被认为是扫描错误,25%是识别错误,45%是决策错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验