Suppr超能文献

人工智能检测到的偶发性肺栓塞中患者症状与CT形态的相关性

Correlating Patient Symptoms and CT Morphology in AI-Detected Incidental Pulmonary Embolisms.

作者信息

Abed Selim, Brandstetter Lucas, Hergan Klaus

机构信息

General Hospital Salzburg, Müllnerhauptstrasse 48, 5020 Salzburg, Austria.

出版信息

Diagnostics (Basel). 2025 Jun 27;15(13):1639. doi: 10.3390/diagnostics15131639.

Abstract

: Incidental pulmonary embolisms (IPEs) may be asymptomatic and radiologists may discover them for unrelated reasons, and they can thereby go underdiagnosed and undertreated. Artificial intelligence (AI) has emerged as a possible aid to radiologists in identifying IPEs. This study aimed to assess the clinical and radiological significance of IPEs that a deep learning AI algorithm detected and correlate them with thrombotic burden, CT morphologic signs of right heart strain, and clinical symptoms. : We retrospectively evaluated 13,603 contrast-enhanced thoracic and abdominal CT scans performed over one year at a tertiary care hospital using a CE- and FDA-cleared AI algorithm. Natural language processing (NLP) tools were used to determine whether IPEs were reported by radiologists. We scored confirmed IPEs using the Mastora, Qanadli, Ghanima, and Kirchner scores, and morphologic indicators of right heart strain and clinical parameters such as symptomatology, administered anticoagulation, and 6-month outcomes were analyzed. : AI identified 41 IPE cases, of which 61% occurred in oncologic patients. Most emboli were segmental, with no signs of right heart strain. Only 10% of patients were symptomatic. Thrombotic burden scores were similar between oncologic and non-oncologic groups. Four deaths occurred-all in oncologic patients. One untreated case experienced the recurrence of pulmonary embolism. Despite frequent detection, many IPEs were clinically silent. : AI can effectively detect IPEs that are missed on initial review. However, most AI-detected IPEs are clinically silent. Integrating AI findings with morphologic and clinical criteria is crucial to avoid overtreatment and to guide appropriate management.

摘要

偶发性肺栓塞(IPEs)可能无症状,放射科医生可能因无关原因发现它们,因此可能诊断不足和治疗不足。人工智能(AI)已成为放射科医生识别IPEs的一种可能辅助手段。本研究旨在评估深度学习AI算法检测到的IPEs的临床和放射学意义,并将它们与血栓负荷、右心劳损的CT形态学征象及临床症状相关联。

我们回顾性评估了一家三级医疗中心一年内使用经CE和FDA批准的AI算法进行的13603例胸部和腹部增强CT扫描。使用自然语言处理(NLP)工具确定放射科医生是否报告了IPEs。我们使用Mastora、Qanadli、Ghanima和Kirchner评分对确诊的IPEs进行评分,并分析右心劳损的形态学指标及临床参数,如症状、抗凝治疗及6个月的预后情况。

AI识别出41例IPEs病例,其中61%发生在肿瘤患者中。大多数栓子为节段性,无右心劳损迹象。只有10%的患者有症状。肿瘤组和非肿瘤组的血栓负荷评分相似。发生了4例死亡,均为肿瘤患者。1例未治疗的病例出现了肺栓塞复发。尽管检测频繁,但许多IPEs在临床上并无症状。

AI能够有效检测出初次检查时漏诊的IPEs。然而,大多数AI检测到的IPEs在临床上并无症状。将AI结果与形态学和临床标准相结合对于避免过度治疗和指导适当的管理至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01be/12249480/a7728fe7d1fd/diagnostics-15-01639-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验