De Kruijff B, Verkleij A J, Leunissen-Bijvelt J, Van Echteld C J, Hille J, Rijnbout H
Biochim Biophys Acta. 1982 Dec 8;693(1):1-12. doi: 10.1016/0005-2736(82)90464-3.
The influence of cations on the structure of aqueous dispersions of the sodium salt of bovine heart cardiolipin was investigated using binding experiments, 31P-NMR, freeze-fracture electron microscopy, small angle X-ray diffraction and batch calorimetry techniques. In the 1-3 mM concentration range, Ca2 induces a bilayer leads to hexagonal HII transition for the lipid. During this transition there is a marked increase in Ca2+ binding from a maximum of 0.35 Ca/cardiolipin in the bilayer to 1.0 Ca/cardiolipin in the hexagonal HII phase. Only when the cardiolipin liposomes are exposed to locally high Ca2+ concentrations is the bilayer leads to hexagonal HII transition accompanied by the appearance of an intermediate 'isotropic' structure characterized by an isotropic 31P-NMR signal and lipidic particles. In contrast, in mixed dioleoylphosphatidylcholine/cardiolipin (1:1) liposomes, Ca2+ concentrations as low as 100 microM will induce an 'isotropic' structure under conditions where no locally high Ca2+ concentrations can occur. In this system at higher Ca2+ concentrations (above 5 mM) the hexagonal HII phase formation occurs. At least 80% of the phosphatidylcholine can be incorporated into this phase. The Ca2+ -induced bilayer to hexagonal transition is an endothermic reaction with a delta H of approx. 1.8 kcal/mol. Removal of Ca2+ from the hexagonally organized calcium-cardiolipin (1:1) complex by dialysis is an extremely slow process with a half-time in excess of 80 h. After 23 h of dialysis at a Ca/cardiolipin ratio of 0.86 an 'isotropic' structure is observed, characterized by an isotropic 31P-NMR signal and the presence of lipidic particles. After 70 h of dialysis (Ca/cardiolipin = 0.7) a new phase is observed. This phase which is optically isotropic and highly viscous separates from a lipid-free aqueous phase and contains 111 mM cardiolipin (15.5% by weight). The phospholipid molecules undergo rapid isotropic motion and the freeze-fracture morphology indicates the presence of a highly curved interconnected bilayer network separating various aqueous compartments. No defined X-ray diffraction bands can be observed for this phase. These characteristics are typical for cubic phases. This phase is metastable as mechanical agitation immediately induces the formation of large bilayer vesicles.
采用结合实验、31P-NMR、冷冻断裂电子显微镜、小角X射线衍射和批量量热法等技术,研究了阳离子对牛心磷脂钠盐水分散体结构的影响。在1-3 mM浓度范围内,Ca2+诱导双层结构转变为脂质的六方HII相。在此转变过程中,Ca2+结合量显著增加,从双层结构中最大0.35 Ca/心磷脂增加到六方HII相中的1.0 Ca/心磷脂。只有当心磷脂脂质体暴露于局部高Ca2+浓度时,双层结构才会转变为六方HII相,并伴随着出现以各向同性31P-NMR信号和脂质颗粒为特征的中间“各向同性”结构。相比之下,在二油酰磷脂酰胆碱/心磷脂(1:1)混合脂质体中,低至100 microM的Ca2+浓度在不会出现局部高Ca2+浓度的条件下也会诱导形成“各向同性”结构。在该体系中,较高Ca2+浓度(高于5 mM)时会形成六方HII相。至少80%的磷脂酰胆碱可掺入该相中。Ca +诱导的双层结构向六方相的转变是一个吸热反应,ΔH约为1.8 kcal/mol。通过透析从六方组织的钙-心磷脂(1:1)复合物中去除Ca2+是一个极其缓慢的过程,半衰期超过80小时。在Ca/心磷脂比为0.86的情况下透析23小时后,观察到一种“各向同性”结构,其特征为各向同性31P-NMR信号和脂质颗粒的存在。透析70小时后(Ca/心磷脂 = 0.7),观察到一个新相。这个相光学各向同性且高度粘稠,与无脂质水相分离,含有111 mM心磷脂(重量比15.5%)。磷脂分子进行快速各向同性运动,冷冻断裂形态表明存在高度弯曲的相互连接的双层网络,分隔着不同的水相区室。该相未观察到明确的X射线衍射带。这些特征是立方相的典型特征。这个相是亚稳态的,因为机械搅拌会立即诱导形成大的双层囊泡。